Microquasar

Last updated
Artist's impression of the microquasar SS 433 Ss433 art big.gif
Artist's impression of the microquasar SS 433

A microquasar, the smaller version of a quasar, is a compact region surrounding a stellar black hole with a mass several times that of its companion star. [1] The matter being pulled from the companion star forms an accretion disk around the black hole. This accretion disk may become so hot, due to friction, that it begins to emit X-rays. [2] The disk also projects narrow streams or "jets" of subatomic particles at near-light speed, generating a strong radio wave emission.

Contents

Overview

In 1979, SS 433 became the first microquasar to be discovered. It was thought to be the most exotic case until similar objects such as GRS 1915+105 were discovered in 1994. [2]

In some cases, blobs or "knots" of brighter plasma within the jets appear to be traveling faster than the speed of light, an optical illusion called superluminal motion which is caused by sub-light-speed particles being projected at a small angle relative to the observer. [2]

The 1996 Bruno Rossi Prize of the American Astronomical Society was awarded to Felix Mirabel and Luis Rodríguez for their discovery of the superluminal motion of radio knots in GRS 1915+105, as well as the discovery of double-sided radio jets from galactic sources 1E1740.7-2942 and GRS 1758-258. [3] [4] [5]

Due to the smaller size of microquasars, many of the effects are scaled differently in relation to normal quasars. In quasars, the mean temperature of the accretion disk is several thousand degrees, while in a microquasar the mean temperature is several million degrees. The average size of the accretion disk of a quasar is 1 billion square kilometres (390 million square miles), whereas in microquasars the average size is only 1,000 km2 (390 sq mi). Quasars can project jets up to several million light-years, whereas microquasars can project them only a few light-years; however, the "knots" within the jets of microquasars can exhibit a proper motion (angular motion across the sky) on the order of a thousand times faster than that of knots within a quasar jet because observed microquasars (being within the Milky Way galaxy) are at typical distances on the order of kiloparsecs, rather than hundreds of megaparsecs to several gigaparsecs. [6]

See also

Related Research Articles

Quasar Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN), powered by a supermassive black hole, with mass ranging from millions to tens of billions times the mass of the Sun, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up because of friction and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than a galaxy such as the Milky Way. Usually, quasars are categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

Timeline of black hole physics

Cygnus X-1 Galactic X-ray source in the constellation Cygnus that is very likely a black hole

Cygnus X-1 (abbreviated Cyg X-1) is a galactic X-ray source in the constellation Cygnus and was the first such source widely accepted to be a black hole. It was discovered in 1964 during a rocket flight and is one of the strongest X-ray sources seen from Earth, producing a peak X-ray flux density of 2.3×10−23 Wm−2 Hz−1 (2.3×103 Jansky). It remains among the most studied astronomical objects in its class. The compact object is now estimated to have a mass about 21.2 times the mass of the Sun and has been shown to be too small to be any known kind of normal star, or other likely object besides a black hole. If so, the radius of its event horizon has 300 km "as upper bound to the linear dimension of the source region" of occasional X-ray bursts lasting only for about 1 ms.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not produced by stars. Such excess non-stellar emission has been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an "active galaxy". The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

X-ray binary Class of binary stars

X-ray binaries are a class of binary stars that are luminous in X-rays. The X-rays are produced by matter falling from one component, called the donor, to the other component, called the accretor, which is very compact: a neutron star or black hole. The infalling matter releases gravitational potential energy, up to several tenths of its rest mass, as X-rays. The lifetime and the mass-transfer rate in an X-ray binary depends on the evolutionary status of the donor star, the mass ratio between the stellar components, and their orbital separation.

3C 273 Brightest quasar from Earth located in the constellation Virgo

3C 273 is a quasar located in the constellation of Virgo. It was the first quasar ever to be identified.

Supermassive black hole Largest type of black hole; usually found at the center of galaxies

A supermassive black hole is the largest type of black hole, with mass on the order of millions to billions of times the mass of the Sun (M). Black holes are a class of astronomical objects that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, not even light. Observational evidence indicates that almost every large galaxy has a supermassive black hole at the galaxy's center. The Milky Way has a supermassive black hole in its Galactic Center, which corresponds to the location of Sagittarius A*. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering active galactic nuclei and quasars.

Blazar Very compact quasi-stellar radio source

A blazar is an active galactic nucleus (AGN) with a relativistic jet directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales. Some blazar jets exhibit apparent superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.

Superluminal motion Apparent faster-than-light motion of distant astronomical objects

In astronomy, superluminal motion is the apparently faster-than-light motion seen in some radio galaxies, BL Lac objects, quasars, blazars and recently also in some galactic sources called microquasars. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed of light. All of these sources are thought to contain a black hole, responsible for the ejection of mass at high velocities. Light echoes can also produce apparent superluminal motion.

3C 279 Optically violent variable quasar in the constellation Virgo

3C 279 is an optically violent variable quasar (OVV), which is known in the astronomical community for its variations in the visible, radio and x-ray bands. The quasar was observed to have undergone a period of extreme activity from 1987 until 1991. The Rosemary Hill Observatory (RHO) started observing 3C 279 in 1971, the object was further observed by the Compton Gamma Ray Observatory in 1991, when it was unexpectedly discovered to be one of the brightest gamma ray objects in the sky. It is also one of the brightest and most variable sources in the gamma ray sky monitored by the Fermi Space Telescope. It was used as a calibrator source for Event Horizon Telescope observations of M87* that resulted in the first image of a black hole.

An astrophysical jet is an astronomical phenomenon where outflows of ionised matter are emitted as an extended beam along the axis of rotation. When this greatly accelerated matter in the beam approaches the speed of light, astrophysical jets become relativistic jets as they show effects from special relativity.

SS 433 Binary star system in the constellation Aquila

SS 433 is one of the most exotic star systems observed. It is located in the Milky Way galaxy, and is an eclipsing X-ray binary system, with the primary being a stellar-mass black hole. The spectrum of the secondary companion star suggests that it is a late A-type star. SS 433 is the first discovered microquasar. It is at the centre of the supernova remnant W50.

GRO J1655-40

GRO J1655-40 is a binary star consisting of an evolved F-type primary star and a massive, unseen companion, which orbit each other once every 2.6 days in the constellation of Scorpius. Gas from the surface of the visible star is accreted onto the dark companion, which appears to be a stellar black hole with several times the mass of the Sun. The optical companion of this low-mass X-ray binary is a subgiant F star.

GRS 1915+105 or V1487 Aquilae is an X-ray binary star system which features a regular star and a black hole. It was discovered on August 15, 1992 by the WATCH all-sky monitor aboard Granat. "GRS" stands for "GRANAT source", "1915" is the right ascension and "105" reflects the approximate declination. The near-infrared counterpart was confirmed by spectroscopic observations. The binary system lies 11,000 parsecs away in Aquila. GRS 1915+105 is the heaviest of the stellar black holes so far known in the Milky Way Galaxy, with 10 to 18 times the mass of the Sun. It is also a microquasar, and it appears that the black hole rotates at least 950 times per second, close to the maximum of 1,150 times per second, with a spin parameter value between 0.82 and 1.00.

The Sołtan argument is an astrophysical theory outlined in 1982 by Polish astronomer Andrzej Sołtan. It maintains that if quasars were powered by accretion onto a supermassive black hole, then such supermassive black holes must exist in our local universe as "dead" quasars.

Green Bank Interferometer

The Green Bank Interferometer (GBI) is a former radio astronomy telescope located at Green Bank, West Virginia (USA) and operated by the National Radio Astronomy Observatory (NRAO). It included three on-site radio telescopes of 85-foot (26m) diameter, designated 85-1, 85-3, and 85-2 and a portable telescope.

GRO J1719-24 is supposed to be a low-mass X-ray binary. Its name derives from an X-ray transient, detected in 1993. The system consists of a black hole candidate and a low mass companion, estimated to be a main sequence star of the spectral type K0-5 V.

Accretion disk Structure formed by diffuse material in orbital motion around a massive central body

An accretion disk is a structure formed by diffuse material in orbital motion around a massive central body. The central body is typically a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward towards the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.

TON 618 Quasar in the constellation Canes Venatici

TON 618 is a hyperluminous, broad-absorption-line, radio-loud quasar located near the border of the constellations Canes Venatici and Coma Berenices, with the projected comoving distance of approximately 18.2 billion light-years from Earth. It possesses one of the most massive black holes ever found, with a mass of 66 billion M.

References

  1. "First Microquasar Found Beyond Our Milky Way". www.nrao.edu. Retrieved 19 January 2017.
  2. 1 2 3 "Microquasars in the Milky Way". www.nrao.edu. Retrieved 19 January 2017.
  3. "HEAD AAS Rossi Prize Winners". www.head.aas.org. Retrieved 27 August 2017.
  4. Mirabel, Felix; Rodriguez, Luis F. (1994). "A superluminal source in the Galaxy". Nature. 371 (6492): 46–48. Bibcode:1994Natur.371...46M. doi:10.1038/371046a0. S2CID   4347263.
  5. Mirabel, Felix (1994). "Multiwavelength approach to gamma-ray sources in the Galactic center region". Astrophys. J. Suppl. Ser. 92: 369–373. Bibcode:1994ApJS...92..369M. doi:10.1086/191980.
  6. "Microquasars as sources of high energy phenomena -I.F. Mirabel". ned.ipac.caltech.edu. Retrieved 19 January 2017.