Rogue black hole

Last updated
Animated astrometric observations of the gravitational microlensing of the interstellar MOA-2011-BLG-191/OGLE-2011-BLG-0462 Rogue black hole OGLE-2011-BLG-0462.gif
Animated astrometric observations of the gravitational microlensing of the interstellar MOA-2011-BLG-191/OGLE-2011-BLG-0462

A rogue black hole is a black hole that is not bound by any object's gravity, allowing them to float freely throughout the universe. Since black holes emit no light, the only ways to detect them are gravitational lensing or x-ray bursts that occur when they destroy an object. [2]

Contents

Intergalactic rogue black holes

These are objects without a host galactic group, caused by collisions between two galaxies or when the merging of two black holes is disrupted. It has been estimated that there could be 12 rogue supermassive black holes on the edge of the Milky Way galaxy. [3]

Interstellar rogue black holes

Examples

In January 2022, a team of astronomers reported of OGLE-2011-BLG-0462/MOA-2011-BLG-191, the first unambiguous detection and mass measurement of an isolated stellar black hole using the Hubble Space Telescope together with the Microlensing Observations in Astrophysics (MOA) and the Optical Gravitational Lensing Experiment (OGLE). [4] [1] [5] This black hole is located 5,000 light-years away, has a mass 7.1 times that of the Sun, and moves at about 45 km/s. [6] While there have been other candidates, they have been detected more indirectly. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Quasar</span> Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

<span class="mw-page-title-main">Gravitational lens</span> Light bending by mass between source and observer

A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's general theory of relativity. If light is treated as corpuscles travelling at the speed of light, Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity.

A MAssive Compact Halo Object (MACHO) is a kind of astronomical body that might explain the apparent presence of dark matter in galactic halos. A MACHO is a body that emits little or no radiation and drifts through interstellar space unassociated with any planetary system. Since MACHOs are not luminous, they are hard to detect. MACHO candidates include black holes or neutron stars as well as brown dwarfs and unassociated planets. White dwarfs and very faint red dwarfs have also been proposed as candidate MACHOs. The term was coined by astrophysicist Kim Griest.

<span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

Gravitational microlensing is an astronomical phenomenon caused by the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

<span class="mw-page-title-main">OGLE-2005-BLG-390Lb</span> Super-Earth ice planet orbiting OGLE-2005-BLG-390L

OGLE-2005-BLG-390Lb is a super-Earth ice exoplanet orbiting OGLE-2005-BLG-390L, a star 21,500 ± 3,300 light-years from Earth near the center of the Milky Way, making it one of the most distant planets known. On January 25, 2006, Probing Lensing Anomalies NETwork/Robotic Telescope Network (PLANET/Robonet), Optical Gravitational Lensing Experiment (OGLE), and Microlensing Observations in Astrophysics (MOA) made a joint announcement of the discovery. The planet does not appear to meet conditions presumed necessary to support life.

<span class="mw-page-title-main">Optical Gravitational Lensing Experiment</span> Long-term variability sky survey

The Optical Gravitational Lensing Experiment (OGLE) is a Polish astronomical project based at the University of Warsaw that runs a long-term variability sky survey (1992–present). The main goals are the detection and classification of variable stars, discovery of microlensing events, dwarf novae, and studies of the structure of the Galaxy and the Magellanic Clouds. Since the project began in 1992, it has discovered a multitude of extrasolar planets, together with the first planet discovered using the transit method (OGLE-TR-56b) and gravitational microlensing. The project has been led by professor Andrzej Udalski since its inception.

<span class="mw-page-title-main">Microlensing Observations in Astrophysics</span> Astronomical research project

Microlensing Observations in Astrophysics (MOA) is a collaborative project between researchers in New Zealand and Japan, led by Professor Yasushi Muraki of Nagoya University. They use microlensing to observe dark matter, extra-solar planets, and stellar atmospheres from the Southern Hemisphere. The group concentrates especially on the detection and observation of gravitational microlensing events of high magnification, of order 100 or more, as these provide the greatest sensitivity to extrasolar planets. They work with other groups in Australia, the United States and elsewhere. Observations are conducted at New Zealand's Mt. John University Observatory using a 1.8 m (70.9 in) reflector telescope built for the project.

OGLE-2003-BLG-235L (MOA-2003-BLG-53L) is a star in the constellation of Sagittarius. The first gravitational microlensing event for which a planet orbiting the lens was detected around this star. The event occurred in during July 2003. Two groups observed and independently detected the event: the Optical Gravitational Lensing Experiment (OGLE) and the Microlensing Observations in Astrophysics (MOA), hence, the double designation. It is an orange dwarf star of spectral type K, which is accompanied by a giant planet.

<span class="mw-page-title-main">OGLE-2006-BLG-109L</span>

OGLE-2006-BLG-109L is a dim magnitude 17 M0V galactic bulge star approximately 4,920 light-years away in the constellation of Scorpius.

<span class="mw-page-title-main">OGLE-2006-BLG-109Lc</span> Saturn-sized planet orbiting OGLE-2006-BLG-109L

OGLE-2006-BLG-109Lc is an extrasolar planet approximately 4,925 light-years away in the constellation of Sagittarius. The planet was detected orbiting the star OGLE-2006-BLG-109L in 2008 by a research team using Microlensing. The host star is about 50% the mass of the Sun and the planet is about 90% the mass of Saturn.

<span class="mw-page-title-main">MOA-2007-BLG-192Lb</span> Terrestrial ice planet orbiting MOA-2007-BLG-192L

MOA-2007-BLG-192Lb, occasionally shortened to MOA-192 b, is an extrasolar planet approximately 7,000 light-years away in the constellation of Sagittarius. The planet was discovered orbiting the low-mass star MOA-2007-BLG-192L. It was found when it caused a gravitational microlensing event on May 24, 2007, which was detected as part of the MOA-II microlensing survey at the Mount John University Observatory in New Zealand.

An extragalactic planet, also known as an extragalactic exoplanet or an extroplanet, is a star-bound planet or rogue planet located outside of the Milky Way Galaxy. Due to the immense distances to such worlds, they would be very hard to detect directly. However, indirect evidences suggest that such planets exist. Nonetheless, the most distant individually confirmed planets are SWEEPS-11 and SWEEPS-04, located in Sagittarius, approximately 27,710 light-years from the Sun, while the Milky Way is about 87,400 light-years in diameter. This means that even galactic planets located further than that distance have not been individually confirmed.

The Microlensing Follow-Up Network is an informal group of observers who monitor high magnification gravitational microlensing events in the Milky Way's Galactic Bulge. Its goal is to detect extrasolar planets via microlensing of the parent star by the planet. μFUN is a follow-up network - they monitor microlensing events identified by survey groups such as OGLE and Microlensing Observations in Astrophysics (MOA).

MOA-2010-BLG-477L is a star whose existence was detected when it caused a microlensing event in August, 2010. The microlensing event also revealed the existence of a planet orbiting the star. At first the star was thought to be about 0.67 times the mass of the Sun, in the main-sequence phase of its stellar evolution. But by the time the star should have been separated enough in the sky from the source star of the microlensing event it was not detected, implying that it is actually a dim white dwarf star.

OGLE-2016-BLG-1190Lb is an extremely massive exoplanet, with a mass about 13.4 times that of Jupiter (MJ), or is, possibly, a low mass brown dwarf, orbiting the G-dwarf star OGLE-2016-BLG-1190L, located about 22,000 light years from Earth, in the constellation of Sagittarius, in the galactic bulge of the Milky Way.

<span class="mw-page-title-main">MACS J1149 Lensed Star 1</span> Blue supergiant and second most distant star from earth detected in the constellation Leo

MACS J1149 Lensed Star 1, also known as Icarus, is a blue supergiant star observed through a gravitational lens. It is the seventh most distant individual star to have been detected so far, at approximately 14 billion light-years from Earth. Light from the star was emitted 4.4 billion years after the Big Bang. According to co-discoverer Patrick Kelly, the star is at least a hundred times more distant than the next-farthest non-supernova star observed, SDSS J1229+1122, and is the first magnified individual star seen.

<span class="mw-page-title-main">OGLE-2016-BLG-1928</span> Earth-sized rogue planet detected by microlensing

OGLE-2016-BLG-1928 is an exoplanet located in the constellation Sagittarius, discovered via gravitational microlensing. It is likely to be a rogue (free-floating) planet, as no host star was detected within 8 astronomical units.

<span class="mw-page-title-main">OGLE-2011-BLG-0462</span>

OGLE-2011-BLG-0462, also known as MOA-2011-BLG-191, is a stellar-mass black hole isolated in interstellar space. OGLE-2011-BLG-0462 lies at a distance of 1,720 parsecs in the direction of the galactic bulge in the constellation Sagittarius. The black hole has a mass of about 6.03 M. OGLE-2011-BLG-0462 is the first truly isolated black hole which has been confirmed.

References

  1. 1 2 Gianopoulos, Andrea (2022-06-07). "Hubble Determines Mass of Isolated Black Hole Roaming Our Milky Way Galaxy". NASA. Retrieved 2022-06-12.
  2. Whitwam, Ryan (2022-02-08). "Rogue Black Hole Observed for the First Time". ExtremeTech. Retrieved 2022-02-10.
  3. Ben Turner (2021-08-27). "Rogue black holes could be wandering at the edges of the Milky Way". LiveScience. Retrieved 2022-02-10.
  4. Sahu, Kailash C.; et al. (25 May 2022). "An Isolated Stellar-mass Black Hole Detected through Astrometric Microlensing". The Astrophysical Journal. 933 (1): 83. arXiv: 2201.13296 . Bibcode:2022ApJ...933...83S. doi: 10.3847/1538-4357/ac739e . S2CID   246430448.
  5. Browne, Ed (2022-02-08). "First ever rogue black hole spotted zooming through space at 28 miles per second". Newsweek. Retrieved 2022-02-10.
  6. Tomaswick, Andy (2022-02-06). "The First Rogue Black Hole has Been Discovered, and it's Only 5,000 Light-Years Away". Universe Today. Retrieved 2022-02-10.
  7. Bennett, Dave (2000-01-13). "Lone Black Holes Discovered Adrift in the Galaxy". HubbleSite of NASA. Retrieved 2022-06-12.