Innermost stable circular orbit

Last updated

The innermost stable circular orbit (often called the ISCO) is the smallest marginally stable circular orbit in which a test particle can stably orbit a massive object in general relativity. [1] The location of the ISCO, the ISCO-radius (), depends on the mass and angular momentum (spin) of the central object. The ISCO plays an important role in black hole accretion disks since it marks the inner edge of the disk.

Contents

The ISCO should not be confused with the Roche limit, the innermost point where a physical object can orbit before tidal forces break it up. The ISCO is concerned with theoretical test particles, not real objects. In general terms, the ISCO will be far closer to the central object than the Roche limit.

Basic concept

In classical mechanics, an orbit is achieved when a test particle's angular momentum is enough to resist the gravity force of the central object. As the test particle approaches the central object, the required amount of angular momentum grows, due to the inverse square law nature of gravitation. This can be seen in practical terms in artificial satellite orbits; in geostationary orbit at 35,786 kilometres (22,236 mi) the orbital speed is 10,800 kilometres per hour (6,700 mph), whereas in low Earth orbit it is 27,000 kilometres per hour (17,000 mph). Orbits can be achieved at any altitude, as there is no upper limit to velocity in classical mechanics.

General relativity (GR) introduces an upper limit to the speed of any object: the speed of light. If a test particle is lowered in orbit toward a central object in GR, the test particle will eventually require a speed greater than light to maintain an orbit. This defines the innermost possible instantaneous orbit, known as the innermost circular orbit, which lies at 1.5 times the Schwarzschild radius (for a Black Hole governed by the Schwarzschild metric). This distance is also known as the photon sphere.

In GR, gravity is not treated as a central force that pulls on objects; it instead operates by warping spacetime, thus bending the path that any test particle may travel. The ISCO is the result of an attractive term in the equation representing the energy of a test particle near the central object. [2] This term cannot be offset by additional angular momentum, and any particle within this radius will spiral into the center. The precise nature of the term depends on the conditions of the central object (i.e. whether a black hole has angular momentum).

Non-rotating black holes

For a non-spinning massive object, where the gravitational field can be expressed with the Schwarzschild metric, the ISCO is located at

where is the Schwarzschild radius of the massive object with mass . Thus, even for a non-spinning object, the ISCO radius is only three times the Schwarzschild radius, , suggesting that only black holes and neutron stars have innermost stable circular orbits outside of their surfaces. As the angular momentum of the central object increases, decreases.

Bound circular orbits are still possible between the ISCO and the so-called marginally bound orbit, which has a radius of

but they are unstable. Between and the photon sphere so-called unbound orbits are possible which are extremely unstable and which afford a total energy of more than the rest mass at infinity.

For a massless test particle like a photon, the only possible but unstable circular orbit is exactly at the photon sphere. [3] Inside the photon sphere, no circular orbits exist. Its radius is

The lack of stability inside the ISCO is explained by the fact that lowering the orbit does not free enough potential energy for the orbital speed necessary: the acceleration gained is too little. This is usually shown by a graph of the orbital effective potential which is lowest at the ISCO.

Rotating black holes

The case for rotating black holes is somewhat more complicated. The equatorial ISCO in the Kerr metric depends on whether the orbit is prograde (negative sign in ) or retrograde (positive sign in ):

where

with the rotation parameter . [4]

As the rotation rate of the black hole increases to the maximum of , the prograde ISCO, marginally bound radius and photon sphere radius decrease down to the event horizon radius at the so-called gravitational radius, still logically and locally distinguishable though. [5]

The retrograde radii hence increase towards

,
.

If the particle is also spinning there is a further split in ISCO radius depending on whether the spin is aligned with or against the black hole rotation. [6]

Related Research Articles

<span class="mw-page-title-main">Acceleration</span> Rate of change of velocity

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

<span class="mw-page-title-main">Gravitational redshift</span> Shift of wavelength of a photon to longer wavelength

In physics and general relativity, gravitational redshift is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a redshift. The opposite effect, in which photons gain energy when travelling into a gravitational well, is known as a gravitational blueshift. The effect was first described by Einstein in 1907, eight years before his publication of the full theory of relativity.

<span class="mw-page-title-main">Escape velocity</span> Concept in celestial mechanics

In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming:

The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916.

In Einstein's theory of general relativity, the Schwarzschild metric is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916.

<span class="mw-page-title-main">Stellar dynamics</span> Branch of astrophysics

Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

In quantum mechanics, a Slater determinant is an expression that describes the wave function of a multi-fermionic system. It satisfies anti-symmetry requirements, and consequently the Pauli principle, by changing sign upon exchange of two electrons. Only a small subset of all possible fermionic wave functions can be written as a single Slater determinant, but those form an important and useful subset because of their simplicity.

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

<span class="mw-page-title-main">Hill sphere</span> Region in which an astronomical body dominates the attraction of satellites

The Hill sphere is a common model for the calculation of a gravitational sphere of influence. It is the most commonly used model to calculate the spatial extent of gravitational influence of an astronomical body (m) in which it dominates over the gravitational influence of other bodies, particularly a primary (M). It is sometimes confused with other models of gravitational influence, such as the Laplace sphere or being named the Roche sphere, the latter causing confusion with the Roche limit. It was defined by the American astronomer George William Hill, based on the work of the French astronomer Édouard Roche.

<span class="mw-page-title-main">Circular orbit</span> Orbit with a fixed distance from the barycenter

A circular orbit is an orbit with a fixed distance around the barycenter; that is, in the shape of a circle. In this case, not only the distance, but also the speed, angular speed, potential and kinetic energy are constant. There is no periapsis or apoapsis. This orbit has no radial version.

In general relativity, Schwarzschild geodesics describe the motion of test particles in the gravitational field of a central fixed mass that is, motion in the Schwarzschild metric. Schwarzschild geodesics have been pivotal in the validation of Einstein's theory of general relativity. For example, they provide accurate predictions of the anomalous precession of the planets in the Solar System and of the deflection of light by gravity.

The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity. As an electrovacuum solution, it only includes those charges associated with the magnetic field; it does not include any free electric charges.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

<span class="mw-page-title-main">Kruskal–Szekeres coordinates</span> Coordinate system for the Schwarzschild geometry

In general relativity, Kruskal–Szekeres coordinates, named after Martin Kruskal and George Szekeres, are a coordinate system for the Schwarzschild geometry for a black hole. These coordinates have the advantage that they cover the entire spacetime manifold of the maximally extended Schwarzschild solution and are well-behaved everywhere outside the physical singularity. There is no coordinate singularity at the horizon.

<span class="mw-page-title-main">Photon sphere</span> High-gravity spherical region of spacetime around which light and thus photons travel in orbits

A photon sphere or photon circle arises in a neighbourhood of the event horizon of a black hole where gravity is so strong that emitted photons will not just bend around the black hole but also return to the point where they were emitted from and consequently display boomerang-like properties. As the source emitting photons falls into the gravitational field towards the event horizon the shape of the trajectory of each boomerang photon changes, tending to a more circular form. At a critical value of the radial distance from the singularity the trajectory of a boomerang photon will take the form of a non-stable circular orbit, thus forming a photon circle and hence in aggregation a photon sphere. The circular photon orbit is said to be the last photon orbit. The radius of the photon sphere, which is also the lower bound for any stable orbit, is, for a Schwarzschild black hole,

The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation.

In general relativity, Lense–Thirring precession or the Lense–Thirring effect is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum .

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In Einstein's theory of general relativity, the interior Schwarzschild metric is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid and has zero pressure at the surface. This is a static solution, meaning that it does not change over time. It was discovered by Karl Schwarzschild in 1916, who earlier had found the exterior Schwarzschild metric.

References

  1. Misner, Charles; Thorne, Kip S.; Wheeler, John (1973). Gravitation. W. H. Freeman and Company. ISBN   0-7167-0344-0.
  2. Nolte, David D. (28 August 2021). "Inner-Most Stable Circular Orbit". Galileo Unbound.
  3. Carroll, Sean M. (December 1997). "Lecture Notes on General Relativity: The Schwarzschild Solution and Black Holes". arXiv: gr-qc/9712019 . Bibcode:1997gr.qc....12019C . Retrieved 2017-04-11.
  4. Bardeen, James M.; Press, William H.; Teukolsky, Saul A. (December 1972). "Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation". The Astrophysical Journal. 178: 347–370. Bibcode:1972ApJ...178..347B. doi:10.1086/151796.
  5. Hirata, Christopher M. (December 2011). "Lecture XXVII: Kerr black holes: II. Precession, circular orbits, and stability" (PDF). Caltech. Retrieved 5 March 2018.
  6. Jefremov, Paul I.; Tsupko, Oleg Yu.; Bisnovatyi-Kogan, Gennady S. (15 June 2015). "Innermost stable circular orbits of spinning test particles in Schwarzschild and Kerr space-times". Physical Review D. 91 (12) 124030. arXiv: 1503.07060 . Bibcode:2015PhRvD..91l4030J. doi:10.1103/PhysRevD.91.124030. S2CID   119233768.