Hyperbolic orthogonality

Last updated
Euclidean orthogonality is preserved by rotation in the left diagram; hyperbolic orthogonality with respect to hyperbola (B) is preserved by hyperbolic rotation in the right diagram. Orthogonality and rotation.svg
Euclidean orthogonality is preserved by rotation in the left diagram; hyperbolic orthogonality with respect to hyperbola (B) is preserved by hyperbolic rotation in the right diagram.

In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity.

Contents

Geometry

Two lines are hyperbolic orthogonal when they are reflections of each other over the asymptote of a given hyperbola. Two particular hyperbolas are frequently used in the plane:

  1. xy = 1 with y = 0 as asymptote. When reflected in the x-axis, a line y = mx becomes y = −mx. In this case the lines are hyperbolic orthogonal if their slopes are additive inverses.
  2. x2y2 = 1 with y = x as asymptote. For lines y = mx with 1 < m < 1, when x = 1/m, then y = 1. The point (1/m , 1) on the line is reflected across y = x to (1, 1/m). Therefore the reflected line has slope 1/m and the slopes of hyperbolic orthogonal lines are reciprocals of each other.

The relation of hyperbolic orthogonality actually applies to classes of parallel lines in the plane, where any particular line can represent the class. Thus, for a given hyperbola and asymptote A, a pair of lines (a, b) are hyperbolic orthogonal if there is a pair (c, d) such that , and c is the reflection of d across A.

Similar to the perpendularity of a circle radius to the tangent, a radius to a hyperbola is hyperbolic orthogonal to a tangent to the hyperbola. [1] [2]

A bilinear form is used to describe orthogonality in analytic geometry, with two elements orthogonal when their bilinear form vanishes. In the plane of complex numbers , the bilinear form is , while in the plane of hyperbolic numbers the bilinear form is

The vectors z1 and z2 in the complex number plane, and w1 and w2 in the hyperbolic number plane are said to be respectively Euclidean orthogonal or hyperbolic orthogonal if their respective inner products [bilinear forms] are zero. [3]

The bilinear form may be computed as the real part of the complex product of one number with the conjugate of the other. Then

entails perpendicularity in the complex plane, while
implies the w's are hyperbolic orthogonal.

The notion of hyperbolic orthogonality arose in analytic geometry in consideration of conjugate diameters of ellipses and hyperbolas. [4] If g and g′ represent the slopes of the conjugate diameters, then in the case of an ellipse and in the case of a hyperbola. When a = b the ellipse is a circle and the conjugate diameters are perpendicular while the hyperbola is rectangular and the conjugate diameters are hyperbolic-orthogonal.

In the terminology of projective geometry, the operation of taking the hyperbolic orthogonal line is an involution. Suppose the slope of a vertical line is denoted ∞ so that all lines have a slope in the projectively extended real line. Then whichever hyperbola (A) or (B) is used, the operation is an example of a hyperbolic involution where the asymptote is invariant. Hyperbolically orthogonal lines lie in different sectors of the plane, determined by the asymptotes of the hyperbola, thus the relation of hyperbolic orthogonality is a heterogeneous relation on sets of lines in the plane.

Simultaneity

Since Hermann Minkowski's foundation for spacetime study in 1908, the concept of points in a spacetime plane being hyperbolic-orthogonal to a timeline (tangent to a world line) has been used to define simultaneity of events relative to the timeline, or relativity of simultaneity. In Minkowski's development the hyperbola of type (B) above is in use. [5] Two vectors (x1, y1, z1, t1) and (x2, y2, z2, t2) are normal (meaning hyperbolic orthogonal) when

When c = 1 and the ys and zs are zero, x1 0, t2 0, then .

Given a hyperbola with asymptote A, its reflection in A produces the conjugate hyperbola. Any diameter of the original hyperbola is reflected to a conjugate diameter. The directions indicated by conjugate diameters are taken for space and time axes in relativity. As E. T. Whittaker wrote in 1910, "[the] hyperbola is unaltered when any pair of conjugate diameters are taken as new axes, and a new unit of length is taken proportional to the length of either of these diameters." [6] On this principle of relativity, he then wrote the Lorentz transformation in the modern form using rapidity.

Edwin Bidwell Wilson and Gilbert N. Lewis developed the concept within synthetic geometry in 1912. They note "in our plane no pair of perpendicular [hyperbolic-orthogonal] lines is better suited to serve as coordinate axes than any other pair" [1]

Related Research Articles

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Hyperboloid</span> Unbounded quadric surface

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic. The technique does not require putting the equation of a conic section into a standard form, thus making it easier to investigate those conic sections whose axes are not parallel to the coordinate system.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In mathematical physics, Minkowski space combines inertial space and time manifolds with a non-inertial reference frame of space and time into a four-dimensional model relating a position to the field.

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

<span class="mw-page-title-main">Degenerate conic</span> 2nd-degree plane curve which is reducible

In geometry, a degenerate conic is a conic that fails to be an irreducible curve. This means that the defining equation is factorable over the complex numbers as the product of two linear polynomials.

In algebra, a split complex number is based on a hyperbolic unitj satisfying A split-complex number has two real number components x and y, and is written The conjugate of z is Since the product of a number z with its conjugate is an isotropic quadratic form.

In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace W of a vector space V equipped with a bilinear form B is the set W of all vectors in V that are orthogonal to every vector in W. Informally, it is called the perp, short for perpendicular complement. It is a subspace of V.

<span class="mw-page-title-main">Hyperbolic angle</span> Argument of the hyperbolic functions

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

<span class="mw-page-title-main">Squeeze mapping</span> Linear mapping permuting rectangles of the same area

In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is not a rotation or shear mapping.

<span class="mw-page-title-main">Cassini oval</span> Class of quartic plane curves

In geometry, a Cassini oval is a quartic plane curve defined as the locus of points in the plane such that the product of the distances to two fixed points (foci) is constant. This may be contrasted with an ellipse, for which the sum of the distances is constant, rather than the product. Cassini ovals are the special case of polynomial lemniscates when the polynomial used has degree 2.

In mathematics, a function of a motor variable is a function with arguments and values in the split-complex number plane, much as functions of a complex variable involve ordinary complex numbers. William Kingdon Clifford coined the term motor for a kinematic operator in his "Preliminary Sketch of Biquaternions" (1873). He used split-complex numbers for scalars in his split-biquaternions. Motor variable is used here in place of split-complex variable for euphony and tradition.

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

Rapidity is a measure for relativistic velocity. For one-dimensional motion, rapidities are additive. However, velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.

<span class="mw-page-title-main">Hyperboloid model</span> Model of n-dimensional hyperbolic geometry

In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S+ of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m-planes are represented by the intersections of (m+1)-planes passing through the origin in Minkowski space with S+ or by wedge products of m vectors. Hyperbolic space is embedded isometrically in Minkowski space; that is, the hyperbolic distance function is inherited from Minkowski space, analogous to the way spherical distance is inherited from Euclidean distance when the n-sphere is embedded in (n+1)-dimensional Euclidean space.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In geometry, two diameters of a conic section are said to be conjugate if each chord parallel to one diameter is bisected by the other diameter. For example, two diameters of a circle are conjugate if and only if they are perpendicular.

<span class="mw-page-title-main">Unit hyperbola</span> Geometric figure

In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length

<span class="mw-page-title-main">Confocal conic sections</span> Conic sections with the same foci

In geometry, two conic sections are called confocal if they have the same foci.

References

  1. 1 2 Edwin B. Wilson & Gilbert N. Lewis (1912) "The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics" Proceedings of the American Academy of Arts and Sciences 48:387–507, esp. 415 doi : 10.2307/20022840
  2. Bjørn Felsager (2004), Through the Looking Glass – A glimpse of Euclid’s twin geometry, the Minkowski geometry Archived 2011-07-16 at the Wayback Machine , ICME-10 Copenhagen; pages 6 & 7.
  3. Sobczyk, G.(1995) Hyperbolic Number Plane, also published in College Mathematics Journal 26:268–80.
  4. Barry Spain (1957) Analytical Conics, ellipse §33, page 38 and hyperbola §41, page 49, from Hathi Trust
  5. Minkowski, Hermann (1909), "Raum und Zeit"  , Physikalische Zeitschrift, 10: 75–88
  6. E. T. Whittaker (1910) A History of the Theories of Aether and Electricity Dublin: Longmans, Green and Co. (see page 441)