Kasner metric

Last updated
Figure 1. Dynamics of Kasner metrics eq. 2 in spherical coordinates towards singularity. The Lifshitz-Khalatnikov parameter is u=2 (1/u=0.5) and the r coordinate is 2pa(1/u)t where t is logarithmic time: t = ln t. Shrinking along the axes is linear and uniform (no chaoticity). Kasner-simple.gif
Figure 1. Dynamics of Kasner metrics eq. 2 in spherical coordinates towards singularity. The Lifshitz-Khalatnikov parameter is u=2 (1/u=0.5) and the r coordinate is 2pα(1/u)τ where τ is logarithmic time: τ = ln t. Shrinking along the axes is linear and uniform (no chaoticity).

The Kasner metric (developed by and named for the American mathematician Edward Kasner in 1921) [2] is an exact solution to Albert Einstein's theory of general relativity. It describes an anisotropic universe without matter (i.e., it is a vacuum solution). It can be written in any spacetime dimension and has strong connections with the study of gravitational chaos.

Contents

Metric and conditions

The metric in spacetime dimensions is

,

and contains constants , called the Kasner exponents. The metric describes a spacetime whose equal-time slices are spatially flat, however space is expanding or contracting at different rates in different directions, depending on the values of the . Test particles in this metric whose comoving coordinate differs by are separated by a physical distance .

The Kasner metric is an exact solution to Einstein's equations in vacuum when the Kasner exponents satisfy the following Kasner conditions,

The first condition defines a plane, the Kasner plane, and the second describes a sphere, the Kasner sphere. The solutions (choices of ) satisfying the two conditions therefore lie on the sphere where the two intersect (sometimes confusingly also called the Kasner sphere). In spacetime dimensions, the space of solutions therefore lie on a dimensional sphere .

Features

There are several noticeable and unusual features of the Kasner solution:

where we have used the first Kasner condition. Therefore can describe either a Big Bang or a Big Crunch, depending on the sense of
The Friedmann–Lemaître–Robertson–Walker metric employed in cosmology, by contrast, is able to expand or contract isotropically because of the presence of matter.

See also

Notes

  1. The expression for r is derived by logarithming the power coefficients in the metric: ln [t2pα(1/u)] = 2pα(1/u) ln t.
  2. Kasner, E. "Geometrical theorems on Einstein’s cosmological equations." Am. J. Math.43, 217–221 (1921).

Related Research Articles

Schwarzschild metric Solution to the Einstein field equations

In Einstein's theory of general relativity, the Schwarzschild metric is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916, and around the same time independently by Johannes Droste, who published his more complete and modern-looking discussion four months after Schwarzschild.

In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.

In mathematics and physics, n-dimensional anti-de Sitter space (AdSn) is a maximally symmetric Lorentzian manifold with constant negative scalar curvature. Anti-de Sitter space and de Sitter space are named after Willem de Sitter (1872–1934), professor of astronomy at Leiden University and director of the Leiden Observatory. Willem de Sitter and Albert Einstein worked together closely in Leiden in the 1920s on the spacetime structure of the universe.

Friedmann–Lemaître–Robertson–Walker metric Metric based on the exact solution of Einsteins field equations of general relativity

The Friedmann–Lemaître–Robertson–Walkermetric is a metric based on the exact solution of Einstein's field equations of general relativity; it describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are customarily grouped as Friedmann or Friedmann–Robertson–Walker (FRW) or Robertson–Walker (RW) or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.

Einstein field equations Field equations in general relativity

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

In differential geometry and mathematical physics, an Einstein manifold is a Riemannian or pseudo-Riemannian differentiable manifold whose Ricci tensor is proportional to the metric. They are named after Albert Einstein because this condition is equivalent to saying that the metric is a solution of the vacuum Einstein field equations, although both the dimension and the signature of the metric can be arbitrary, thus not being restricted to Lorentzian manifolds. Einstein manifolds in four Euclidean dimensions are studied as gravitational instantons.

In theoretical physics, the Brans–Dicke theory of gravitation is a theoretical framework to explain gravitation. It is a competitor to Einstein's theory of general relativity. It is an example of a scalar–tensor theory, a gravitational theory in which the gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity. The gravitational constant G is not presumed to be constant but instead 1/G is replaced by a scalar field which can vary from place to place and with time.

In general relativity, a vacuum solution is a Lorentzian manifold whose Einstein tensor vanishes identically. According to the Einstein field equation, this means that the stress–energy tensor also vanishes identically, so that no matter or non-gravitational fields are present. These are distinct from the electrovacuum solutions, which take into account the electromagnetic field in addition to the gravitational field. Vacuum solutions are also distinct from the lambdavacuum solutions, where the only term in the stress–energy tensor is the cosmological constant term.

pp-wave spacetime

In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.

In general relativity, a spacetime is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary spacetime, which is the geometry of a stationary spacetime that does not change in time but can rotate. Thus, the Kerr solution provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is static.

Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

In general relativity, specifically in the Einstein field equations, a spacetime is said to be stationary if it admits a Killing vector that is asymptotically timelike.

<span class="mw-page-title-main">Gödel metric</span> Solution of Einstein field equations

The Gödel metric is an exact solution of the Einstein field equations in which the stress–energy tensor contains two terms, the first representing the matter density of a homogeneous distribution of swirling dust particles, and the second associated with a negative cosmological constant. It is also known as the Gödel solution or Gödel universe.

In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.

In general relativity, a lambdavacuum solution is an exact solution to the Einstein field equation in which the only term in the stress–energy tensor is a cosmological constant term. This can be interpreted physically as a kind of classical approximation to a nonzero vacuum energy. These are discussed here as distinct from the vacuum solutions in which the cosmological constant is vanishing.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. There are several different types of coordinate chart which are adapted to this family of nested spheres; the best known is the Schwarzschild chart, but the isotropic chart is also often useful. The defining characteristic of an isotropic chart is that its radial coordinate is defined so that light cones appear round. This means that, the angular isotropic coordinates do not faithfully represent distances within the nested spheres, nor does the radial coordinate faithfully represent radial distances. On the other hand, angles in the constant time hyperslices are represented without distortion, hence the name of the chart.

ADM formalism

The ADM formalism is a Hamiltonian formulation of general relativity that plays an important role in canonical quantum gravity and numerical relativity. It was first published in 1959.

<span class="mw-page-title-main">BKL singularity</span> General relativity model near the beginning of the universe

A Belinski–Khalatnikov–Lifshitz (BKL) singularity is a model of the dynamic evolution of the universe near the initial gravitational singularity, described by an anisotropic, chaotic solution of the Einstein field equation of gravitation. According to this model, the universe is chaotically oscillating around a gravitational singularity in which time and space become equal to zero or, equivalently, the spacetime curvature becomes infinitely big. This singularity is physically real in the sense that it is a necessary property of the solution, and will appear also in the exact solution of those equations. The singularity is not artificially created by the assumptions and simplifications made by the other special solutions such as the Friedmann–Lemaître–Robertson–Walker, quasi-isotropic, and Kasner solutions.

In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.

References