Photon sphere

Last updated
An animation of how light rays can be gravitationally bent to form a photon sphere Black Hole Shadow.gif
An animation of how light rays can be gravitationally bent to form a photon sphere

A photon sphere [1] or photon circle [2] is an area or region of space where gravity is so strong that photons are forced to travel in orbits, which is also sometimes called the last photon orbit. [3] The radius of the photon sphere, which is also the lower bound for any stable orbit, is, for a Schwarzschild black hole,

Contents

where G is the gravitational constant, M is the mass of the black hole, c is the speed of light in vacuum, and rs is the Schwarzschild radius (the radius of the event horizon); see below for a derivation of this result.

This equation entails that photon spheres can only exist in the space surrounding an extremely compact object (a black hole or possibly an "ultracompact" neutron star [4] ).

The photon sphere is located farther from the center of a black hole than the event horizon. Within a photon sphere, it is possible to imagine a photon that is emitted (or reflected) from the back of one's head and, following an orbit of the black hole, is then intercepted by the person's eye, allowing one to see the back of the head. For non-rotating black holes, the photon sphere is a sphere of radius 3/2 rs. There are no stable free-fall orbits that exist within or cross the photon sphere. Any free-fall orbit that crosses it from the outside spirals into the black hole. Any orbit that crosses it from the inside escapes to infinity or falls back in and spirals into the black hole. No unaccelerated orbit with a semi-major axis less than this distance is possible, but within the photon sphere, a constant acceleration will allow a spacecraft or probe to hover above the event horizon.

Another property of the photon sphere is centrifugal force (note: not centripetal) reversal. [5] Outside the photon sphere, the faster one orbits, the greater the outward force one feels. Centrifugal force falls to zero at the photon sphere, including non-freefall orbits at any speed, i.e. an object weighs the same no matter how fast it orbits, and becomes negative inside it. Inside the photon sphere, faster orbiting leads to greater weight or inward force. This has serious ramifications for the fluid dynamics of inward fluid flow.

A rotating black hole has two photon spheres. As a black hole rotates, it drags space with it. The photon sphere that is closer to the black hole is moving in the same direction as the rotation, whereas the photon sphere further away is moving against it. The greater the angular velocity of the rotation of a black hole, the greater the distance between the two photon spheres. Since the black hole has an axis of rotation, this only holds true if approaching the black hole in the direction of the equator. In a polar orbit, there is only one photon sphere. This is because when approaching at this angle, the possibility of traveling with or against the rotation does not exist. The rotation will instead cause the orbit to precess. [6]

Derivation for a Schwarzschild black hole

Since a Schwarzschild black hole has spherical symmetry, all possible axes for a circular photon orbit are equivalent, and all circular orbits have the same radius.

This derivation involves using the Schwarzschild metric, given by

For a photon traveling at a constant radius r (i.e. in the φ-coordinate direction), . Since it is a photon, (a "light-like interval"). We can always rotate the coordinate system such that is constant, (e.g., ).

Setting ds, dr and to zero, we have

Re-arranging gives

To proceed, we need the relation . To find it, we use the radial geodesic equation

Non vanishing -connection coefficients are

where .

We treat photon radial geodesics with constant r and , therefore

Substituting it all into the radial geodesic equation (the geodesic equation with the radial coordinate as the dependent variable), we obtain

Comparing it with what was obtained previously, we have

where we have inserted radians (imagine that the central mass, about which the photon is orbiting, is located at the centre of the coordinate axes. Then, as the photon is travelling along the -coordinate line, for the mass to be located directly in the centre of the photon's orbit, we must have radians).

Hence, rearranging this final expression gives

which is the result we set out to prove.

Photon orbits around a Kerr black hole

Views from the side (l) and from above a pole (r). A rotating black hole has 9 radii between which light can orbit on a constant r coordinate. In this animation, all photon orbits for a = M are shown. Kerr photon orbits with orbital inclination thumbnail.gif
Views from the side (l) and from above a pole (r). A rotating black hole has 9 radii between which light can orbit on a constant r coordinate. In this animation, all photon orbits for a = M are shown.

In contrast to a Schwarzschild black hole, a Kerr (spinning) black hole does not have spherical symmetry, but only an axis of symmetry, which has profound consequences for the photon orbits, see e.g. Cramer [2] for details and simulations of photon orbits and photon circles. There are two circular photon orbits in the equatorial plane (prograde and retrograde), with different Boyer–Lindquist radii:

where is the angular momentum per unit mass of the black hole. [7] There exist other constant-radius orbits, but they have more complicated paths which oscillate in latitude about the equator. [7]

Related Research Articles

<span class="mw-page-title-main">Great circle</span> Spherical geometry analog of a straight line

In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.

In Einstein's theory of general relativity, the Schwarzschild metric is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916.

In general relativity, Eddington–Finkelstein coordinates are a pair of coordinate systems for a Schwarzschild geometry which are adapted to radial null geodesics. Null geodesics are the worldlines of photons; radial ones are those that are moving directly towards or away from the central mass. They are named for Arthur Stanley Eddington and David Finkelstein. Although they appear to have inspired the idea, neither ever wrote down these coordinates or the metric in these coordinates. Roger Penrose seems to have been the first to write down the null form but credits it to the above paper by Finkelstein, and, in his Adams Prize essay later that year, to Eddington and Finkelstein. Most influentially, Misner, Thorne and Wheeler, in their book Gravitation, refer to the null coordinates by that name.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

In general relativity, Schwarzschild geodesics describe the motion of test particles in the gravitational field of a central fixed mass that is, motion in the Schwarzschild metric. Schwarzschild geodesics have been pivotal in the validation of Einstein's theory of general relativity. For example, they provide accurate predictions of the anomalous precession of the planets in the Solar System and of the deflection of light by gravity.

The Kerr–Newman metric is the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged and rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions; that is, it is a solution to the Einstein–Maxwell equations that account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

The Schwarzschild solution describes spacetime under the influence of a massive, non-rotating, spherically symmetric object. It is considered by some to be one of the simplest and most useful solutions to the Einstein field equations.

In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Proper acceleration</span> Physical acceleration experienced by an object

In relativity theory, proper acceleration is the physical acceleration experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.

Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial slices are flat. There is no coordinate singularity at the Schwarzschild radius. The outgoing ones are simply the time reverse of ingoing coordinates.

The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation.

Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.

In general relativity, the de Sitter–Schwarzschild solution describes a black hole in a causal patch of de Sitter space. Unlike a flat-space black hole, there is a largest possible de Sitter black hole, which is the Nariai spacetime. The Nariai limit has no singularities, the cosmological and black hole horizons have the same area, and they can be mapped to each other by a discrete reflection symmetry in any causal patch.

Frame-dragging is an effect on spacetime, predicted by Albert Einstein's general theory of relativity, that is due to non-static stationary distributions of mass–energy. A stationary field is one that is in a steady state, but the masses causing that field may be non-static ⁠— rotating, for instance. More generally, the subject that deals with the effects caused by mass–energy currents is known as gravitoelectromagnetism, which is analogous to the magnetism of classical electromagnetism.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

Photon sphere (definition):
A photon sphere of a static spherically symmetric metric is a timelike hypersurface if the deflection angle of a light ray with the closest distance of approach diverges as

In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented.

In Einstein's theory of general relativity, the interior Schwarzschild metric is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid and has zero pressure at the surface. This is a static solution, meaning that it does not change over time. It was discovered by Karl Schwarzschild in 1916, who earlier had found the exterior Schwarzschild metric.

References

  1. Bennett, Jay (April 10, 2019). "Astronomers Capture First-Ever Image of a Supermassive Black Hole". Smithsonian.com. Smithsonian Institution. Archived from the original on April 13, 2021. Retrieved April 15, 2019.
  2. 1 2 Cramer, Claes R. (1997). "Using the Uncharged Kerr Black Hole as a Gravitational Mirror". General Relativity and Gravitation. 29 (4): 445–454. arXiv: gr-qc/9510053 . Bibcode:1997GReGr..29..445C. doi:10.1023/A:1018878515046. S2CID   9517046.
  3. "What the Sight of a Black Hole Means to a Black Hole Physicist" Archived 2021-05-14 at the Wayback Machine , Quanta Magazine , 10 April 2019: "a region defined by the location closest to the black hole where a beam of light could orbit on a circle, known as the “last photon orbit”."
  4. Properties of ultracompact neutron stars Archived 2021-05-06 at the Wayback Machine .
  5. Abramowicz, Marek (1990). "Centrifugal-force reversal near a Schwarzschild black hole". Monthly Notices of the Royal Astronomical Society. 245: 720. Bibcode:1990MNRAS.245..720A.
  6. Hirata, Christopher M. (December 2011). "Lecture XXVII: Kerr black holes: II. Precession, circular orbits, and stability" (PDF). Caltech. Retrieved 5 March 2018.
  7. 1 2 Teo, Edward (2003). "Spherical Photon Orbits Around a Kerr Black Hole" (PDF). General Relativity and Gravitation. 35 (11): 1909–1926. Bibcode:2003GReGr..35.1909T. doi:10.1023/A:1026286607562. ISSN   0001-7701. S2CID   117097507. Archived (PDF) from the original on 2020-06-03. Retrieved 2010-08-24.