Derivation of the Schwarzschild solution

Last updated

The Schwarzschild solution describes spacetime under the influence of a massive, non-rotating, spherically symmetric object. It is considered by some to be one of the simplest and most useful solutions to the Einstein field equations .[ citation needed ]

Contents

Assumptions and notation

Working in a coordinate chart with coordinates labelled 1 to 4 respectively, we begin with the metric in its most general form (10 independent components, each of which is a smooth function of 4 variables). The solution is assumed to be spherically symmetric, static and vacuum. For the purposes of this article, these assumptions may be stated as follows (see the relevant links for precise definitions):

  1. A spherically symmetric spacetime is one that is invariant under rotations and taking the mirror image.
  2. A static spacetime is one in which all metric components are independent of the time coordinate (so that ) and the geometry of the spacetime is unchanged under a time-reversal .
  3. A vacuum solution is one that satisfies the equation . From the Einstein field equations (with zero cosmological constant), this implies that since contracting yields .
  4. Metric signature used here is (+,+,+,−).

Diagonalising the metric

The first simplification to be made is to diagonalise the metric. Under the coordinate transformation, , all metric components should remain the same. The metric components () change under this transformation as:

()

But, as we expect (metric components remain the same), this means that:

()

Similarly, the coordinate transformations and respectively give:

()
()

Putting all these together gives:

()

and hence the metric must be of the form:

where the four metric components are independent of the time coordinate (by the static assumption).

Simplifying the components

On each hypersurface of constant , constant and constant (i.e., on each radial line), should only depend on (by spherical symmetry). Hence is a function of a single variable:

A similar argument applied to shows that:

On the hypersurfaces of constant and constant , it is required that the metric be that of a 2-sphere:

Choosing one of these hypersurfaces (the one with radius , say), the metric components restricted to this hypersurface (which we denote by and ) should be unchanged under rotations through and (again, by spherical symmetry). Comparing the forms of the metric on this hypersurface gives:

which immediately yields:

and

But this is required to hold on each hypersurface; hence,

and

An alternative intuitive way to see that and must be the same as for a flat spacetime is that stretching or compressing an elastic material in a spherically symmetric manner (radially) will not change the angular distance between two points.

Thus, the metric can be put in the form:

with and as yet undetermined functions of . Note that if or is equal to zero at some point, the metric would be singular at that point.

Calculating the Christoffel symbols

Using the metric above, we find the Christoffel symbols, where the indices are . The sign denotes a total derivative of a function.

Using the field equations to find A(r) and B(r)

To determine and , the vacuum field equations are employed:

Hence:

where a comma is used to set off the index that is being used for the derivative. The Ricci curvature is diagonal in the given coordinates:

where the prime means the r derivative of the functions.

Only three of the field equations are nontrivial (the fourth equation is just times the third equation) and upon simplification become, respectively:

,
,

Subtracting the first and second equations produces:

where is a non-zero real constant. Substituting into the third equation and tidying up gives:

which has general solution:

for some non-zero real constant . Hence, the metric for a static, spherically symmetric vacuum solution is now of the form:

Note that the spacetime represented by the above metric is asymptotically flat, i.e. as , the metric approaches that of the Minkowski metric and the spacetime manifold resembles that of Minkowski space.

Using the weak-field approximation to find K and S

This diagram gives the route to find the Schwarzschild solution by using the weak field approximation. The equality on the second row gives g44 = -c + 2GM/r, assuming the desired solution degenerates to Minkowski metric when the motion happens far away from the blackhole (r approaches to positive infinity). Weak field approximation diagram.svg
This diagram gives the route to find the Schwarzschild solution by using the weak field approximation. The equality on the second row gives g44 = −c + 2GM/r, assuming the desired solution degenerates to Minkowski metric when the motion happens far away from the blackhole (r approaches to positive infinity).

The geodesics of the metric (obtained where is extremised) must, in some limit (e.g., toward infinite speed of light), agree with the solutions of Newtonian motion (e.g., obtained by Lagrange equations). (The metric must also limit to Minkowski space when the mass it represents vanishes.)

(where is the kinetic energy and is the Potential Energy due to gravity) The constants and are fully determined by some variant of this approach; from the weak-field approximation one arrives at the result:

where is the gravitational constant, is the mass of the gravitational source and is the speed of light. It is found that:

and

Hence:

and

So, the Schwarzschild metric may finally be written in the form:

Note that:

is the definition of the Schwarzschild radius for an object of mass , so the Schwarzschild metric may be rewritten in the alternative form:

which shows that the metric becomes singular approaching the event horizon (that is, ). The metric singularity is not a physical one (although there is a real physical singularity at ), as can be shown by using a suitable coordinate transformation (e.g. the Kruskal–Szekeres coordinate system).

Alternate derivation using known physics in special cases

The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1] Start with the metric with coefficients that are unknown coefficients of :

Now apply the Euler–Lagrange equation to the arc length integral Since is constant, the integrand can be replaced with because the E–L equation is exactly the same if the integrand is multiplied by any constant. Applying the E–L equation to with the modified integrand yields:

where dot denotes differentiation with respect to

In a circular orbit so the first E–L equation above is equivalent to

Kepler's third law of motion is

In a circular orbit, the period equals implying

since the point mass is negligible compared to the mass of the central body So and integrating this yields where is an unknown constant of integration. can be determined by setting in which case the spacetime is flat and So and

When the point mass is temporarily stationary, and The original metric equation becomes and the first E–L equation above becomes When the point mass is temporarily stationary, is the acceleration of gravity, So

Alternative form in isotropic coordinates

The original formulation of the metric uses anisotropic coordinates in which the velocity of light is not the same in the radial and transverse directions. Arthur Eddington gave alternative forms in isotropic coordinates. [2] For isotropic spherical coordinates , , , coordinates and are unchanged, and then (provided ) [3]

   ,     ,   and

Then for isotropic rectangular coordinates , , ,

  

The metric then becomes, in isotropic rectangular coordinates:

Dispensing with the static assumption – Birkhoff's theorem

In deriving the Schwarzschild metric, it was assumed that the metric was vacuum, spherically symmetric and static. The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; the Schwarzschild solution thus follows. Birkhoff's theorem has the consequence that any pulsating star that remains spherically symmetric does not generate gravitational waves, as the region exterior to the star remains static.

See also

Related Research Articles

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation . Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

<span class="mw-page-title-main">Projectile motion</span> Motion of launched objects due to gravity

Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible. The curved path of objects in projectile motion was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upward or downward. The study of such motions is called ballistics, and such a trajectory is a ballistic trajectory. The only force of mathematical significance that is actively exerted on the object is gravity, which acts downward, thus imparting to the object a downward acceleration towards the Earth’s center of mass. Because of the object's inertia, no external force is needed to maintain the horizontal velocity component of the object's motion. Taking other forces into account, such as aerodynamic drag or internal propulsion, requires additional analysis. A ballistic missile is a missile only guided during the relatively brief initial powered phase of flight, and whose remaining course is governed by the laws of classical mechanics.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In general relativity, Schwarzschild geodesics describe the motion of test particles in the gravitational field of a central fixed mass that is, motion in the Schwarzschild metric. Schwarzschild geodesics have been pivotal in the validation of Einstein's theory of general relativity. For example, they provide accurate predictions of the anomalous precession of the planets in the Solar System and of the deflection of light by gravity.

The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

<span class="mw-page-title-main">Photon sphere</span> High-gravity spherical region of space around which massless particles travel in orbits

A photon sphere or photon circle is an area or region of space where gravity is so strong that photons are forced to travel in orbits, which is also sometimes called the last photon orbit. The radius of the photon sphere, which is also the lower bound for any stable orbit, is, for a Schwarzschild black hole,

<span class="mw-page-title-main">Hopf bifurcation</span> Critical point where a periodic solution arises

In the mathematical theory of bifurcations, a Hopfbifurcation is a critical point where, as a parameter changes, a system's stability switches and a periodic solution arises. More accurately, it is a local bifurcation in which a fixed point of a dynamical system loses stability, as a pair of complex conjugate eigenvalues—of the linearization around the fixed point—crosses the complex plane imaginary axis as a parameter crosses a threshold value. Under reasonably generic assumptions about the dynamical system, the fixed point becomes a small-amplitude limit cycle as the parameter changes.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Proper acceleration</span> Physical acceleration experienced by an object

In relativity theory, proper acceleration is the physical acceleration experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.

In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modeled by general relativity. The equation is

In general relativity, Lense–Thirring precession or the Lense–Thirring effect is a relativistic correction to the precession of a gyroscope near a large rotating mass such as the Earth. It is a gravitomagnetic frame-dragging effect. It is a prediction of general relativity consisting of secular precessions of the longitude of the ascending node and the argument of pericenter of a test particle freely orbiting a central spinning mass endowed with angular momentum .

<span class="mw-page-title-main">Radiative transfer equation and diffusion theory for photon transport in biological tissue</span>

Photon transport in biological tissue can be equivalently modeled numerically with Monte Carlo simulations or analytically by the radiative transfer equation (RTE). However, the RTE is difficult to solve without introducing approximations. A common approximation summarized here is the diffusion approximation. Overall, solutions to the diffusion equation for photon transport are more computationally efficient, but less accurate than Monte Carlo simulations.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

References

  1. Brown, Kevin. "Reflections on Relativity".
  2. A S Eddington, "Mathematical Theory of Relativity", Cambridge UP 1922 (2nd ed.1924, repr.1960), at page 85 and page 93. Symbol usage in the Eddington source for interval s and time-like coordinate t has been converted for compatibility with the usage in the derivation above.
  3. Buchdahl, H. A. (1985). "Isotropic coordinates and Schwarzschild metric". International Journal of Theoretical Physics. 24 (7): 731–739. Bibcode:1985IJTP...24..731B. doi:10.1007/BF00670880. S2CID   121246377.