Timeline of gravitational physics and relativity

Last updated

Einstein's mass-energy equation in a 1912 manuscript. He originally used
L
{\displaystyle L}
instead of
E
{\displaystyle E}
to denote energy. E mc 2 IMG 0859.jpg
Einstein's mass-energy equation in a 1912 manuscript. He originally used instead of to denote energy.

The following is a timeline of gravitational physics and general relativity .

Contents

Before 1500

1500s

1600s

Geometric diagram for Newton's proof of Kepler's second law. Principia1846-105.png
Geometric diagram for Newton's proof of Kepler's second law.

1700s

Lagrange points Lagrange very massive.svg
Lagrange points

1800s

1900s

The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964. USS Enterprise (CVAN-65), USS Long Beach (CGN-9) and USS Bainbridge (DLGN-25) underway in the Mediterranean Sea during Operation Sea Orbit, in 1964.jpg
The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964.

1910s

Einstein's 1911 argument for gravitational redshift Einstein's argument that falling light acquires energy.svg
Einstein's 1911 argument for gravitational redshift

1920s

1930s

The Einstein Cross is an example of gravitational lensing at work. This one was discovered in 1985. Einstein cross (cropped).jpg
The Einstein Cross is an example of gravitational lensing at work. This one was discovered in 1985.

1940s

1950s

1960s

1970s

1980s

Variations in the temperature of the cosmic microwave background measured by the COBE satellite. The plane of the Milky Way Galaxy is horizontal across the middle of each picture. COBE cmb fluctuations.png
Variations in the temperature of the cosmic microwave background measured by the COBE satellite. The plane of the Milky Way Galaxy is horizontal across the middle of each picture.

1990s

Parameter space of various approximation techniques in general relativity GR2bodyparameterspace.png
Parameter space of various approximation techniques in general relativity

2000s

2010s

Improving cosmological measurements by three different satellites PIA16874-CobeWmapPlanckComparison-20130321.jpg
Improving cosmological measurements by three different satellites

2020s

The size of Sagittarius A* is smaller than the orbit of Mercury. Eso2208-eht-mwe.tif
The size of Sagittarius A* is smaller than the orbit of Mercury.

See also

Related Research Articles

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, not even light and other electromagnetic waves, is capable of possessing enough energy to escape it. Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum. Other characteristics are uniquely determined by these three parameters, and all other information about the matter that formed a black hole or is falling into it "disappears" behind the black-hole event horizon and is therefore permanently inaccessible to external observers after the black hole "settles down". Physicist John Archibald Wheeler expressed this idea with the phrase "black holes have no hair", which was the origin of the name.

Jorge Pullin is an Argentine-American theoretical physicist known for his work on black hole collisions and quantum gravity. He is the Horace Hearne Chair in theoretical Physics at the Louisiana State University.

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by time dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Irwin Shapiro wrote:

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.

<span class="mw-page-title-main">PSR J0737−3039</span> Double pulsar in the constellation Puppis

PSR J0737−3039 is the first known double pulsar. It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system. The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B. It was discovered in 2003 at Australia's Parkes Observatory by an international team led by the Italian radio astronomer Marta Burgay during a high-latitude pulsar survey.

Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954. A more accurate program starting in 1959 tested general relativity in the weak gravitational field limit, severely limiting possible deviations from the theory.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena described by Albert Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

An exotic star is a hypothetical compact star composed of exotic matter, and balanced against gravitational collapse by degeneracy pressure or other quantum properties.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is a subfield of astronomy concerned with the detection and study of gravitational waves emitted by astrophysical sources.

In classical theories of gravitation, the changes in a gravitational field propagate. A change in the distribution of energy and momentum of matter results in subsequent alteration, at a distance, of the gravitational field which it produces. In the relativistic sense, the "speed of gravity" refers to the speed of a gravitational wave, which, as predicted by general relativity and confirmed by observation of the GW170817 neutron star merger, is equal to the speed of light (c).

Hořava–Lifshitz gravity is a theory of quantum gravity proposed by Petr Hořava in 2009. It solves the problem of different concepts of time in quantum field theory and general relativity by treating the quantum concept as the more fundamental so that space and time are not equivalent (anisotropic) at high energy level. The relativistic concept of time with its Lorentz invariance emerges at large distances. The theory relies on the theory of foliations to produce its causal structure. It is related to topologically massive gravity and the Cotton tensor. It is a possible UV completion of general relativity. Also, the speed of light goes to infinity at high energies. The novelty of this approach, compared to previous approaches to quantum gravity such as loop quantum gravity, is that it uses concepts from condensed matter physics such as quantum critical phenomena. Hořava's initial formulation was found to have side-effects such as predicting very different results for a spherical Sun compared to a slightly non-spherical Sun, so others have modified the theory. Inconsistencies remain, though progress was made on the theory. Nevertheless, observations of gravitational waves emitted by the neutron-star merger GW170817 contravene predictions made by this model of gravity. Some have revised the theory to account for this.

<span class="mw-page-title-main">Binary black hole</span> System consisting of two black holes in close orbit around each other

A binary black hole (BBH), or black hole binary, is a system consisting of two black holes in close orbit around each other. Like black holes themselves, binary black holes are often divided into stellar binary black holes, formed either as remnants of high-mass binary star systems or by dynamic processes and mutual capture; and binary supermassive black holes, believed to be a result of galactic mergers.

<span class="mw-page-title-main">Tsvi Piran</span> Israeli theoretical physicist and astrophysicist (born 1949)

Tsvi Piran is an Israeli theoretical physicist and astrophysicist, best known for his work on Gamma-ray Bursts (GRBs) and on numerical relativity. The recipient of the 2019 EMET prize award in Physics and Space Research.

<span class="mw-page-title-main">First observation of gravitational waves</span> 2015 direct detection of gravitational waves by the LIGO and VIRGO interferometers

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

Manuela Campanelli is a professor of astrophysics of the Rochester Institute of Technology. She also holds the John Vouros endowed professorship at RIT and is the director of its Center for Computational Relativity and Gravitation. Her work focuses on the astrophysics of merging black holes and neutron stars, which are powerful sources of gravitational waves, electromagnetic radiation and relativistic jets. This research is central to the fields of relativistic astrophysics and gravitational-wave astronomy.

Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion. The theory was first proposed by Gregory Horndeski in 1974 and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy. Horndeski's theory contains many theories of gravity, including General relativity, Brans-Dicke theory, Quintessence, Dilaton, Chameleon and covariant Galileon as special cases.

Christopher John Pethick is a British theoretical physicist, specializing in many-body theory, ultra-cold atomic gases, and the physics of neutron stars and stellar collapse.

References

  1. 1 2 Bauer, Susan Wise (2015). "Chapter Seven: The Last Ancient Astronomer". The Story of Science from the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN   978-0-393-24326-0.
  2. Gribbin, John (2003). "Chapter 3: The First Scientists". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 76–7. ISBN   978-1-400-06013-9.
  3. 1 2 Pasachoff, Naomi; Pasachoff, Jay (2012). "Galileo Galilei". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN   978-0-500-25191-1.
  4. 1 2 Dolnick, Edward (2011). "Timeline". The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World. New York: Harper Collins. ISBN   9780061719516.
  5. "Olber's Paradox: Why Is The Sky Dark at Night?". American Museum of Natural History. Retrieved June 6, 2024.
  6. Bauer, Susan Wise (2015). "Chapter Ten: The Death of Aristotle". The Story of Science: From the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN   978-0-393-24326-0.
  7. 1 2 Iliffe, Rob (2012). "Isaac Newton". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN   978-0-500-25191-1.
  8. Gribbin, John (2002). "4. Science Finds Its Feet". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. New york: Random House. pp. 122–23. ISBN   0-8129-6788-7.
  9. 1 2 Newton, Isaac (1999). The Principia: The Authoritative Translation and Guide. Translated by Cohen, I. Bernard; Whitman, Anne; Budenz, Julia. University of California Press. ISBN   978-0-520-29088-4.
  10. Kleppner, Daniel; Kolenkow, Robert J. (1973). "8.4: The Principle of Equivalence". An Introduction to Mechanics. McGraw-Hill. pp. 353–54. ISBN   0-07-035048-5.
  11. Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. Retrieved 16 June 2020 via Internet Archive.
  12. Sagan, Carl; Druyan, Ann (1997). Comet. New York: Random House. pp. 66–67. ISBN   978-0-3078-0105-0.
  13. De mundi systemate, Isaac Newton, London: J. Tonson, J. Osborn, & T. Longman, 1728.
  14. Newton, Isaac; Cohen, I. Bernard (2004-01-01). A Treatise of the System of the World. Courier Corporation. ISBN   978-0-486-43880-1.
  15. Maclaurin, Colin. A Treatise of Fluxions: In Two Books. 1. Vol. 1. Ruddimans, 1742.
  16. Chandrasekhar, Subrahmanyan (1969). "5: The Maclaurin Spheroids". Ellipsoidal Figures of Equilibrium. New Haven: Yale University Press. ISBN   978-0-30001-116-6.
  17. 1 2 Woolfson, M.M. (1993). "Solar System – its origin and evolution". Q. J. R. Astron. Soc. 34: 1–20. Bibcode:1993QJRAS..34....1W. For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
  18. Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D. (2006). Dynamical Systems, the Three-Body Problem, and Space Mission Design. p. 9. Archived from the original on 2008-05-27. Retrieved 2008-06-09. (16MB)
  19. Euler, Leonhard (1765). De motu rectilineo trium corporum se mutuo attrahentium (PDF).
  20. Euler L, Nov. Comm. Acad. Imp. Petropolitanae, 10, pp. 207–242, 11, pp. 152–184; Mémoires de l'Acad. de Berlin, 11, 228–249.
  21. Lagrange, Joseph-Louis (1867–92). "Tome 6, Chapitre II: Essai sur le problème des trois corps". Œuvres de Lagrange (in French). Gauthier-Villars. pp. 229–334.
  22. Cavendish, Henry (1798). "Experiments to Determine the Density of Earth". Philosophical Transactions of the Royal Society. 88: 469–526. doi: 10.1098/rstl.1798.0022 . JSTOR   106988.
  23. Clotfelter, B.E. (1987). "The Cavendish Experiment as Cavendish Knew It". American Journal of Physics. 55 (3): 210–213. Bibcode:1987AmJPh..55..210C. doi:10.1119/1.15214.
  24. s:On the Space Theory of Matter
  25. 1 2 3 4 5 Shankland, Robert Sherwood (1964). "Michelson-Morley Experiment". American Journal of Physics. 32: 16–35. doi:10.1119/1.1970063.
  26. Michaelson, Albert A.; Morley, Edward W. (1887). "On the Relative Motion of the Earth and the Luminiferous Ether". American Journal of Science. 134 (333): 333–345. Bibcode:1887AmJS...34..333M. doi:10.2475/ajs.s3-34.203.333. S2CID   124333204.
  27. French, A. P. (1968). "Chapter 2: Perplexities in the Propagation of Light". Special Relativity. New York: W. W. Norton & Company. pp. 52–58. ISBN   0-393-09793-5.
  28. Bod, L.; Fischbach, E.; Marx, G.; Náray-Ziegler, Maria (31 Aug 1990). "One Hundred Years of the Eötvös Experiment". Archived from the original on October 22, 2012.
  29. Isaacson, Walter (2007). "Chapter Three: The Zurich Polytechnic". Einstein: His Life and Universe. Simon & Shuster. p. 37.
  30. Gerber, P. (1917) [1902]. "Die Fortpflanzungsgeschwindigkeit der Gravitation". Annalen der Physik. 52 (4): 415–444. Bibcode:1917AnP...357..415G. doi:10.1002/andp.19173570404. (Originally published in Programmabhandlung des städtischen Realgymnasiums zu Stargard i. Pomm., 1902)
  31. 1 2 Robinson, Andrew (2012). "Albert Einstein". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN   978-0-500-25191-1.
  32. Galison, Peter (2014). "Einstein and Poincaré". In Brockman, John (ed.). The Universe. New York: HarperCollins. ISBN   978-0-06-229608-5.
  33. Lorentz, Hendrik Antoon (1904). "Electromagnetic Phenomena in a System Moving with Any Velocity Smaller than That of Light" (PDF). Proceedings of the Royal Netherlands Academy of Arts and Sciences. 6: 809–831.
  34. Einstein, Albert (1905). "Zur Elektrodynamik bewegter Körper" [On the Electrodynamics of Moving Bodies](PDF). Annalen der Physik. Series 4. 17 (10): 891–921. Bibcode:1905AnP...322..891E. doi:10.1002/andp.19053221004.
  35. Isaacson, Walter (2007). "Chapter Six: Special Relativity". Einstein: His Life and Universe. New York: Simon & Shuster. ISBN   978-0-7432-6473-0.
  36. Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" [Does the Inertia of a Body Depend upon its Energy Content?](PDF). Annalen der Physik. Series 4. 18 (13): 639–641. Bibcode:1905AnP...323..639E. doi:10.1002/andp.19053231314. S2CID   122309633.
  37. Einstein, Albert (1935). "Elementary derivation of the equivalence of mass and energy" (PDF). Bulletin of the American Mathematical Society . 41 (4): 223–230. doi:10.1090/S0002-9904-1935-06046-X.
  38. Hecht, Eugene (2011). "How Einstein Confirmed ". American Journal of Physics. 79: 591–600. doi:10.1119/1.3549223.
  39. Isaacson, Walter (2007). "Chapter Six: Special Relativity". Einstein: His Life and Universe. Simon & Shuster. p. 132. ISBN   978-0-7432-6473-0.
  40. Isaacson, Walter (2007). "Chapter Seven: The Happiest Thought". Einstein: His Life and Universe. Simon & Shuster. p. 141. ISBN   978-0-7432-6473-0.
  41. Einstein, Albert (1907). "Relativitätsprinzip und die aus demselben gezogenen Folgerungen" [On the Relativity Principle and the Conclusions Drawn from It](PDF). Jahrbuch der Radioaktivität (4): 411–462.
  42. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 McEvoy, J. P.; Zarate, Oscar (1995). Introducing Stephen Hawking. Totem Books. ISBN   978-1-874-16625-2.
  43. Eddington, A. S. (1926). "Einstein Shift and Doppler Shift". Nature. 117 (2933): 86. Bibcode:1926Natur.117...86E. doi: 10.1038/117086a0 . ISSN   1476-4687. S2CID   4092843.
  44. Minkowski, Hermann (1915). "Das Relativitätsprinzip". Annalen der Physik. 352 (15): 927–938. Bibcode:1915AnP...352..927M. doi:10.1002/andp.19153521505.
  45. Corry, Leo (1997). "Hermann Minkowski and the Postulate of Relativity" (PDF). Archive for History of Exact Sciences. 51 (4): 273–314. doi:10.1007/BF00518231. S2CID   27016039.
  46. Gribbin, John (2004). "11. Let There be Light". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 440–1. ISBN   978-0-812-96788-3.
  47. Born, Max (1909). "Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips" [The theory of the rigid electron in the kinematics of the principle of relativity]. Annalen der Physik (in German). 355 (11): 1–56. Bibcode:1909AnP...335....1B. doi:10.1002/andp.19093351102.
  48. Born, Max (1909). "Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips". Physikalische Zeitschrift. 10: 814–17.
  49. Ehrenfest, Paul (1909). "Gleichförmige Rotation starrer Körper und Relativitätstheorie" [Uniform Rotation of Rigid Bodies and Theory of Relativity]. Physikalische Zeitschrift (in German). 10 (918): 918. Bibcode:1909PhyZ...10..918E.
  50. Weber, T. A. (1997). "A note on rotating coordinates in relativity". American Journal of Physics. 65 (6): 486–7. Bibcode:1997AmJPh..65..486W. doi:10.1119/1.18575.
  51. 1 2 Janssen, Michel; Renn, Jürgen (November 2015). "History: Einstein Was No Lone Genius". Nature. 527: 298–300. doi:10.1038/527298a.
  52. Einstein, Albert (1911). "Einfluss der Schwerkraft auf die Ausbreitung des Lichtes" [On the Influence of Gravitation upon the Propagation of Light](PDF). Annalen der Physik. Series 4 (in German). 35: 898–908. doi:10.1002/andp.19113401005.
  53. Kottler, Friedrich (1912). "Über die Raumzeitlinien der Minkowski'schen Welt" [On the Spacetime Lines of a Minkowski World]. Wiener Sitzungsberichte 2a (in German). 121: 1659–1759.
  54. Einstein, Albert (1915). "Feldgleichungen der Gravitation" [Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847.
  55. 1 2 Janssen, Michel; Renn, Jürgen (2015). "Arch and scaffold: How Einstein found his field equations". Physics Today. 68 (11): 30–36. doi:10.1063/PT.3.2979. hdl: 11858/00-001M-0000-002A-8ED7-1 .
  56. Einstein, Albert (1915). "Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie" [Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 831–839. Bibcode:1915SPAW.......831E.
  57. Einstein, Albert (1916). "Grundlage der allgemeinen Relativitätstheorie" [The Foundation of the General Theory of Relativity](PDF). Annalen der Physik. 4 (7): 769–822. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702.
  58. Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407
  59. Marsden, Jerrold; Tromba, Anthony (2012). "7.7 Applications to Differential Geometry, Physics, and Forms of Life". Vector Calculus (6th ed.). New York: W. H. Freeman Company. p. 422. ISBN   978-1-4292-1508-4.
  60. Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie" [On the Gravitational Field of a Point Mass According to Einstein's Theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  61. Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit" [On the Gravitational Field of a Sphere of Incompressible Fluid]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  62. Levy, Adam (January 11, 2021). "How black holes morphed from theory to reality". Knowable Magazine. doi: 10.1146/knowable-010921-1 . Retrieved 25 March 2022.
  63. Eisenstaedt, "The Early Interpretation of the Schwarzschild Solution," in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
  64. Bartusiak, Marcia (2015). "Chapter 3: One Would Then Find Oneself... in a Geometrical Fairyland". Black Hole: How An Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN   978-0-300-21085-9.
  65. Einstein, Albert (1916). "Näherungsweise Integration der Feldgleichungen der Gravitation" [Approximate Integration of the Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 688–696. Bibcode:1916SPAW.......688E.
  66. de Sitter, W (1916). "On Einstein's Theory of Gravitation and its Astronomical Consequences". Mon. Not. R. Astron. Soc. 77: 155–184. Bibcode:1916MNRAS..77..155D. doi: 10.1093/mnras/77.2.155 .
  67. Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" [Cosmological Considerations in the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German). 1: 142–152.
  68. The Internal Constitution of the Stars A. S. Eddington The Scientific Monthly Vol. 11, No. 4 (Oct., 1920), pp. 297–303 JSTOR   6491
  69. Eddington, A. S. (1916). "On the radiative equilibrium of the stars". Monthly Notices of the Royal Astronomical Society. 77: 16–35. Bibcode:1916MNRAS..77...16E. doi: 10.1093/mnras/77.1.16 .
  70. Einstein, Albert (1918). "Gravitationswellen" [Gravitational Waves]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 154–167.
  71. Holz, Daniel; Hughes, Scott; Bernard, Schultz (December 2018). "Measuring cosmic distances with standard sirens". Physics Today. 71 (12): 34. Bibcode:2018PhT....71l..34H. doi: 10.1063/PT.3.4090 . S2CID   125545290.
  72. Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 33. Bibcode:1918PhyZ...19...33T. [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
  73. Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift. 22: 29. Bibcode:1921PhyZ...22...29T. [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
  74. Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 156–163. Bibcode:1918PhyZ...19..156L. [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
  75. Dyson, F.W.; Eddington, A.S.; Davidson, C.R. (1920). "A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Solar eclipse of May 29, 1919". Philosophical Transactions of the Royal Society A . 220 (571–581): 291–333. Bibcode:1920RSPTA.220..291D. doi: 10.1098/rsta.1920.0009 .
  76. Kennefick, Daniel (1 March 2009). "Testing relativity from the 1919 eclipse – a question of bias". Physics Today. 62 (3): 37–42. Bibcode:2009PhT....62c..37K. doi: 10.1063/1.3099578 .
  77. Kaiser, David (November 6, 2015). "Opinion | How Politics Shaped General Relativity". The New York Times. ISSN   0362-4331 . Retrieved August 26, 2024.
  78. Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) (in German): 966–972. Bibcode:1921SPAW.......966K.
  79. Pais, Abraham (2000). "Chapter 7: Oskar Klein". The Genius of Science: A Portrait Gallery of Twentieth-Century Physicists. New York: Oxford University Press. ISBN   0-19-850614-7.
  80. Friedman, Alexander (December 1922). "Über die Krümmung des Raumes". Zeitschrift für Physik (in German). 10 (1): 377–386. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID   125190902. Translated in: Friedmann, Alexander (December 1999). "On the Curvature of Space". General Relativity and Gravitation . 31 (12): 1991–2000. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741. S2CID   122950995.
  81. Marzlin, Karl-Peter (1994). "The physical meaning of Fermi coordinates". General Relativity and Gravitation. 26 (6): 619–636. arXiv: gr-qc/9402010 . Bibcode:1994GReGr..26..619M. doi:10.1007/BF02108003. S2CID   17918026.
  82. Segrè, Gino; Hoerlin, Bettina (2016). "Chapter 4: Student Days". The Pope of Physics. Henry Holt and Co. p. 27. ISBN   978-1-627-79005-5.
  83. 1 2 Hitchin, N. J. (2006). "Arthur Geoffrey Walker. 17 July 1909 -- 31 March 2001: Elected FRS 1955". Biographical Memoirs of Fellows of the Royal Society . 52: 413–421. doi:10.1098/rsbm.2006.0028.
  84. Eddington, A. S. (1924). "On the relation between the masses and luminosities of the stars". Monthly Notices of the Royal Astronomical Society. 84 (5): 308–333. Bibcode:1924MNRAS..84..308E. doi: 10.1093/mnras/84.5.308 .
  85. Lanczos, Cornelius (1924). "Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie" [On a static cosmology in the sense of Einstein's theory of gravity]. Zeitschrift für Physik (in German). 21 (1): 73–110. Bibcode:1924ZPhy...21...73L. doi:10.1007/BF01328251.
  86. van Stuckum, Willem Jacob (1938). "The gravitational field of a distribution of particles rotating around an axis of symmetry". Proceedings of the Royal Society of Edinburgh. 57: 135–154. doi:10.1017/S0370164600013699.
  87. Adams, W. S. (1925). "The Relativity Displacement of the Spectral Lines in the Companion of Sirius". Proceedings of the National Academy of Sciences. 11 (7): 382–387. Bibcode:1925PNAS...11..382A. doi: 10.1073/pnas.11.7.382 . PMC   1086032 . PMID   16587023.
  88. "Big bang theory is introduced – 1927". A Science Odyssey. WGBH. Retrieved 31 July 2014.
  89. Hubble, Edwin (15 March 1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences . 15 (3): 168–173. Bibcode:1929PNAS...15..168H. doi: 10.1073/pnas.15.3.168 . PMC   522427 . PMID   16577160. Archived from the original on 1 October 2006. Retrieved 28 November 2019.
  90. Huchra, J.; et al. (1985). "2237 + 0305: A new and unusual gravitational lens". Astronomical Journal . 90: 691–696. Bibcode:1985AJ.....90..691H. doi: 10.1086/113777 .
  91. Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine. 11 (70): 592–596. doi:10.1080/14786443109461710. S2CID   119906976.
  92. Chandrasekhar, S. (1931). "The Maximum Mass of Ideal White Dwarfs". Astrophysical Journal. 74: 81–82. Bibcode:1931ApJ....74...81C. doi: 10.1086/143324 .
  93. "Obituary: Georges Lemaitre". Physics Today. 19 (9): 119–121. September 1966. doi: 10.1063/1.3048455 .
  94. Lemaître, Georges; Eddington, Stanley (March 1931). "The Expanding Universe". Monthly Notices of the Royal Astronomical Society. 91 (5): 490–501. doi: 10.1093/mnras/91.5.490 .
  95. Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" [On the Cosmological Problem of the General Theory of Relativity]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 235–237.
  96. Einstein; and De Sitter (1932). "On the relation between the expansion and the mean density of the universe". Proceedings of the National Academy of Sciences. 18 (3): 213–214. Bibcode:1932PNAS...18..213E. doi: 10.1073/pnas.18.3.213 . PMC   1076193 . PMID   16587663.
  97. Cockcroft, John; Walton, Ernest (April 1932). "Disintegration of Lithium by Swift Protons". Nature. 129 (649): 649. Bibcode:1932Natur.129..649C. doi:10.1038/129649a0.
  98. Poffenberger, Leah; Levine, Alaina G. (April 2019). Voss, David (ed.). "April 14, 1932: Cockcroft and Walton Split the Atom". This Month in History. APS News. 28 (4). American Physical Society (APS).
  99. D. I., Blokhintsev; F. M., Gal'perin (1934). "Гипотеза нейтрино и закон сохранения энергии" [Neutrino hypothesis and conservation of energy]. Pod Znamenem Marxisma (in Russian). 6: 147–157. ISBN   978-5-04-008956-7.
  100. Farmelo, Graham (2009). The Strangest Man : The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber. pp. 367–368. ISBN   978-0-571-22278-0.
  101. Debnath, Lokenath (2013). "A short biography of Paul A. M. Dirac and historical development of Dirac delta function". International Journal of Mathematical Education in Science and Technology. 44 (8): 1201–1223. Bibcode:2013IJMES..44.1201D. doi:10.1080/0020739X.2013.770091. ISSN   0020-739X.
  102. Baade, Walter; Zwicky, Fritz (1934). "Remarks on Super-novae and Cosmic Rays" (PDF). Physical Review. 46 (1): 76–77. Bibcode:1934PhRv...46...76B. doi:10.1103/PHYSREV.46.76.2.
  103. McCormick, Katie (July 18, 2023). "Ultracold Gases Can Probe Neutron Star Guts". Scientific American. Archived from the original on July 31, 2023. Retrieved July 31, 2023.
  104. A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev.48(73) (1935).
  105. Einstein, Albert (1936). "Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field". Science. 84 (2188): 506–507. Bibcode:1936Sci....84..506E. doi:10.1126/science.84.2188.506. PMID   17769014.
  106. F. Zwicky (1937). "Nebulae as Gravitational lenses" (PDF). Physical Review . 51 (4): 290. Bibcode:1937PhRv...51..290Z. doi:10.1103/PhysRev.51.290. Archived (PDF) from the original on 2013-12-26.
  107. Einstein, Albert & Rosen, Nathan (1937). "On Gravitational waves". Journal of the Franklin Institute. 223: 43–54. Bibcode:1937FrInJ.223...43E. doi:10.1016/S0016-0032(37)90583-0.
  108. Einstein, Albert; Infeld, Leopold; Hoffmann, Banesh (1938). "The Gravitational Equations and the Problem of Motion". Annals of Mathematics. 39 (1): 65–100. doi:10.2307/1968714. JSTOR   1968714.
  109. Lee, S.; Brown, G. E. (2007). "Hans Albrecht Bethe. 2 July 1906 — 6 March 2005: Elected ForMemRS 1957". Biographical Memoirs of Fellows of the Royal Society . 53: 1. doi: 10.1098/rsbm.2007.0018 .
  110. Tolman, Richard C. (1939). "Static Solutions of Einstein's Field Equations for Spheres of Fluid". Physical Review. 55 (364): 364–373. Bibcode:1939PhRv...55..364T. doi:10.1103/PhysRev.55.364.
  111. 1 2 3 4 Pais, Abraham; Crease, Robert (2006). J. Robert Oppenheimer: A Life. Oxford University Press. pp. 31–2. ISBN   978-0-195-32712-0.
  112. Oppenheimer, J.R.; Serber, Robert (1938). "On the Stability of Stellar Neutron Cores". Physical Review . 54 (7): 540. Bibcode:1938PhRv...54..540O. doi:10.1103/PhysRev.54.540.
  113. Oppenheimer, J.R.; Volkoff, G.M. (1939). "On Massive Neutron Cores" (PDF). Physical Review . 55 (4): 374–381. Bibcode:1939PhRv...55..374O. doi:10.1103/PhysRev.55.374. Archived (PDF) from the original on January 16, 2014. Retrieved January 15, 2014.
  114. Oppenheimer, J.R.; Snyder, H. (1939). "On Continued Gravitational Contraction". Physical Review . 56 (5): 455–459. Bibcode:1939PhRv...56..455O. doi: 10.1103/PhysRev.56.455 .
  115. Bartels, Megan (July 21, 2023). "Oppenheimer Almost Discovered Black Holes Before He Became 'Destroyer of Worlds'". Scientific American. Retrieved July 26, 2023.
  116. Alpher, R. A.; Herman, R. C. (1948). "On the Relative Abundance of the Elements". Physical Review . 74 (12): 1737–1742. Bibcode:1948PhRv...74.1737A. doi:10.1103/PhysRev.74.1737.
  117. Alpher, R. A.; Herman, R. C. (1948). "Evolution of the Universe". Nature . 162 (4124): 774–775. Bibcode:1948Natur.162..774A. doi:10.1038/162774b0. S2CID   4113488.
  118. Lanczos, Cornelius (1949-07-01). "Lagrangian Multiplier and Riemannian Spaces". Reviews of Modern Physics. 21 (3). American Physical Society (APS): 497–502. Bibcode:1949RvMP...21..497L. doi: 10.1103/revmodphys.21.497 . ISSN   0034-6861.
  119. Gödel, K., "An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation", Rev. Mod. Phys. 21, 447, published July 1, 1949.
  120. Gupta, Suraj N. (1952). "Quantization of Einstein's Gravitational Field: General Treatment". Proceedings of the Physical Society . Series A. 65 (8): 608–619. Bibcode:1952PPSA...65..608G. doi:10.1088/0370-1298/65/8/304.
  121. Deser, Stanley (1970). "Self-interaction and gauge invariance". General Relativity and Gravitation. 1 (1): 9–18. arXiv: gr-qc/0411023 . Bibcode:1970GReGr...1....9D. doi:10.1007/BF00759198. S2CID   14295121.
  122. 1 2 3 4 5 Preskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002). PDF link
  123. Kraichnan (1955). "Special-Relativistic Derivation of Generally Covariant Gravitation Theory". Physical Review. 98 (4): 1118–1122. Bibcode:1955PhRv...98.1118K. doi:10.1103/PhysRev.98.1118.
  124. Kraichnan (1956). "Possibility of unequal gravitational and inertial masses". Physical Review. 101 (1): 482–488. Bibcode:1956PhRv..101..482K. doi:10.1103/PhysRev.101.482.
  125. Bertotti, B. (1956-10-01). "On gravitational motion". Il Nuovo Cimento. 4 (4): 898–906. Bibcode:1956NCim....4..898B. doi:10.1007/BF02746175. ISSN   1827-6121. S2CID   120443098.
  126. Dewitt, Cécile M.; Rickles, Dean (1957). An Expanded Version of the Remarks by R.P. Feynman on the Reality of Gravitational Waves. EOS – Sources. Wright-Patterson Air Force Base. ISBN   9783945561294 . Retrieved 27 September 2016.
  127. Finkelstein, David (1958). "Past-Future Asymmetry of the Gravitational Field of a Point Particle". Physical Review. 110 (4): 965–967. Bibcode:1958PhRv..110..965F. doi:10.1103/PhysRev.110.965.
  128. Pound, Robert; Rebka, Glen (1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters. 3 (439): 439–441. Bibcode:1959PhRvL...3..439P. doi: 10.1103/PhysRevLett.3.439 .
  129. Kruskal, Martin (1960). "Maximal Extension of Schwarzschild Metric". Physical Review Letters. 119 (1743): 1743–1745. Bibcode:1960PhRv..119.1743K. doi:10.1103/PhysRev.119.1743.
  130. Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society . 64: 261–284. arXiv: 1707.00139 . doi:10.1098/rsbm.2017.0022. ISSN   0080-4606. S2CID   67365148.
  131. Graves, John C.; Brill, Dieter R. (1960). "Oscillatory Character of Reissner-Nordström Metric for an Ideal Charged Wormhole". Physical Review Letters. 120 (4): 1507–1513. Bibcode:1960PhRv..120.1507G. doi:10.1103/PhysRev.120.1507.
  132. Robinson, Ivor; Trautman, A. (1960). "Spherical Gravitational Waves". Physical Review Letters. 4 (8). Cdsads.u-strasbg.fr: 431. Bibcode:1960PhRvL...4..431R. doi:10.1103/PhysRevLett.4.431 . Retrieved 2012-07-20.
  133. Pound, Robert; Rebka, Glen (1960). "Apparent Weight of Photons". Physical Review Letters. 4 (337): 337–341. Bibcode:1960PhRvL...4..337P. doi: 10.1103/PhysRevLett.4.337 .
  134. Tullio E. Regge (1961). "General relativity without coordinates". Nuovo Cimento. 19 (3): 558–571. Bibcode:1961NCim...19..558R. doi:10.1007/BF02733251. S2CID   120696638. Available (subscribers only) at Il Nuovo Cimento
  135. Bran, Carl; Dicke, Robert (1961). "Mach's Principle and a Relativistic Theory of Gravitation". Physical Review Letters. 124 (925): 925–935. Bibcode:1961PhRv..124..925B. doi:10.1103/PhysRev.124.925.
  136. Roll, P.G; Krotkov, R; Dicke, R.H (1964). "The equivalence of inertial and passive gravitational mass". Annals of Physics. 26 (3). Elsevier BV: 442–517. Bibcode:1964AnPhy..26..442R. doi:10.1016/0003-4916(64)90259-3. ISSN   0003-4916.
  137. Dicke, Robert H. (December 1961). "The Eötvös Experiment". Scientific American. 205 (6): 84–95. Bibcode:1961SciAm.205f..84D. doi:10.1038/scientificamerican1261-84.
  138. Wheeler, John; Fuller, Robert (1962). "Causality and Multiply Connected Space-Time". Physical Review Letters. 128 (919): 919–929. Bibcode:1962PhRv..128..919F. doi:10.1103/PhysRev.128.919.
  139. Goldberg, J. N.; Sachs, R. K. (1962). "A theorem on Petrov types (republished January 2009)". General Relativity and Gravitation. 41 (2): 433–444. doi:10.1007/s10714-008-0722-5. S2CID   122155922.; originally published in Acta Phys. Pol. 22, 13–23 (1962).
  140. Kerr, Roy P. (1963). "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics". Physical Review Letters. 11 (5): 237–238. Bibcode:1963PhRvL..11..237K. doi:10.1103/PhysRevLett.11.237.
  141. Penrose, Roger (1963). "Asymptotic Properties of Fields and Space-Times". Physical Review Letters. 10 (66): 66–68. Bibcode:1963PhRvL..10...66P. doi: 10.1103/PhysRevLett.10.66 .
  142. Weinberg, Steven (1964). "Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix". Physics Letters. 9 (4): 357–359. Bibcode:1964PhL.....9..357W. doi:10.1016/0031-9163(64)90396-8.
  143. Weinberg, Steven (1964). "Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass". Physical Review. 135 (4B): B1049–B1056. Bibcode:1964PhRv..135.1049W. doi:10.1103/PhysRev.135.B1049.
  144. Chandrasekhar, Subrahmanyan (1964). "Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity". Physical Review Letters. 12 (4): 114–116. Bibcode:1964PhRvL..12..114C. doi:10.1103/PhysRevLett.12.114.
  145. Chiu, Hong-Yee (May 1964). "Gravitational collapse". Physics Today. 17 (5): 21–34. Bibcode:1964PhT....17e..21C. doi: 10.1063/1.3051610 . So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.
  146. Refsdal, Sjur (1964). "On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect". Monthly Notices of the Royal Astronomical Society. 128 (4): 307–310. doi: 10.1093/mnras/128.4.307 .
  147. Irwin I. Shapiro (1964). "Fourth Test of General Relativity". Physical Review Letters . 13 (26): 789–791. Bibcode:1964PhRvL..13..789S. doi:10.1103/PhysRevLett.13.789.
  148. "Haystack marks physics milestone". MIT News. July 14, 2005. Retrieved May 2, 2023.
  149. Penrose, Roger (1965). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters. 14 (57): 57–59. Bibcode:1965PhRvL..14...57P. doi: 10.1103/PhysRevLett.14.57 .
  150. Newman, Ezra; Janis, Allen (1965). "Note on the Kerr Spinning-Particle Metric". Journal of Mathematical Physics . 6 (6): 915–917. Bibcode:1965JMP.....6..915N. doi:10.1063/1.1704350.
  151. Newman, Ezra; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. (1965). "Metric of a Rotating, Charged Mass". Journal of Mathematical Physics. 6 (6): 918–919. Bibcode:1965JMP.....6..918N. doi:10.1063/1.1704351.
  152. Penzias, A.A.; Wilson, R.W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal . 142: 419–421. Bibcode:1965ApJ...142..419P. doi: 10.1086/148307 .
  153. Bartusiak, Marcia (2015). "Chapter 9: Why Don't You Call It A Black Hole?". Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN   978-0-300-21085-9.
  154. 1 2 Moskowitz, Clara (March 1, 2019). "Neutron Stars: Nature's Weirdest Form of Matter". Scientific American.
  155. Deutsch, David; Isham, Christopher; Vilkovisky, Gregory (2005). "Bryce Seligman DeWitt". Physics Today. 58 (3): 84. Bibcode:2005PhT....58c..84D. doi:10.1063/1.1897570.
  156. Israel, Werner (1967). "Event Horizons in Static Vacuum Space-Times". Phys. Rev. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776.
  157. Carter, Brandon (1968). "Global structure of the Kerr family of gravitational fields". Physical Review. 174 (5): 1559–1571. Bibcode:1968PhRv..174.1559C. doi:10.1103/PhysRev.174.1559.
  158. Hartle, James B.; Thorne, Kip S. (1968). "Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars". The Astrophysical Journal. 153: 807. Bibcode:1968ApJ...153..807H. doi: 10.1086/149707 .
  159. Irwin I. Shapiro; Gordon H. Pettengill; Michael E. Ash; Melvin L. Stone; et al. (1968). "Fourth Test of General Relativity: Preliminary Results". Physical Review Letters . 20 (22): 1265–1269. Bibcode:1968PhRvL..20.1265S. doi:10.1103/PhysRevLett.20.1265.
  160. Nordvedt, Kennet (1968). "Equivalence Principle for Massive Bodies. II. Theory". Physical Review Letters. 169 (1017): 1017–1025. Bibcode:1968PhRv..169.1017N. doi:10.1103/PhysRev.169.1017.
  161. Bonnor, William B. (1969). "The Gravitational Field of Light" (PDF). Communications in Mathematical Physics. 13 (3): 163–174. Bibcode:1969CMaPh..13..163B. doi:10.1007/BF01645484. S2CID   123398946.
  162. "Making Waves". TERP. 2016-08-18. Retrieved 2016-11-07.
  163. Cho, Adrian (February 15, 2016). "Remembering Joseph Weber, the controversial pioneer of gravitational waves". Science.
  164. David Kaiser, "Learning from Gravitational Waves", New York Times, October 3, 2017.
  165. Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento . Rivista Serie. 1: 252–276. Bibcode:1969NCimR...1..252P.
  166. Choquet-Bruhat, Yvonne; Geroch, Robert (1969). "Global aspects of the Cauchy problem in general relativity". Communications in Mathematical Physics. 14 (4): 329–335. Bibcode:1969CMaPh..14..329C. doi:10.1007/BF01645389. S2CID   121522405.
  167. Chandrasekhar, S. (1965). "The post-Newtonian equations of hydrodynamics in General Relativity". The Astrophysical Journal. 142: 1488. Bibcode:1965ApJ...142.1488C. doi:10.1086/148432.
  168. Chandrasekhar, S. (1967). "The post-Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the MacLaurin spheroids". The Astrophysical Journal. 147: 334. Bibcode:1967ApJ...147..334C. doi:10.1086/149003.
  169. Chandrasekhar, S. (1969). "Conservation laws in general relativity and in the post-Newtonian approximations". The Astrophysical Journal. 158: 45. Bibcode:1969ApJ...158...45C. doi: 10.1086/150170 .
  170. Chandrasekhar, S.; Nutku, Y. (1969). "The second post-Newtonian equations of hydrodynamics in General Relativity". Relativistic Astrophysics. 86: 55. Bibcode:1969ApJ...158...55C. doi: 10.1086/150171 .
  171. Chandrasekhar, S.; Esposito, F.P. (1970). "The 2½-post-Newtonian equations of hydrodynamics and radiation reaction in General Relativity". The Astrophysical Journal. 160: 153. Bibcode:1970ApJ...160..153C. doi: 10.1086/150414 .
  172. Hawking, Stephen W.; Ellis, George F. R. (April 1968). "The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe". The Astrophysical Journal . 152: 25. Bibcode:1968ApJ...152...25H. doi:10.1086/149520.
  173. Hawking, Stephen W.; Penrose, Roger (27 January 1970). "The Singularities of Gravitational Collapse and Cosmology". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences . 314 (1519): 529–548. Bibcode:1970RSPSA.314..529H. doi: 10.1098/rspa.1970.0021 .
  174. Goldhaber, Alfred; Nieto, Michael (1971). "Terrestrial and Extraterrestrial Limits on The Photon Mass". Reviews of Modern Physics. 43 (3). American Physical Society: 277–296. Bibcode:1971RvMP...43..277G. doi:10.1103/RevModPhys.43.277.
  175. Jackson, John David (1999). "Section I.2: Inverse Square Law or Mass of the Photon". Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. pp. 5–9. ISBN   0-471-30932-X.
  176. Hawking, Stephen (October 1971). "Black Holes in General Relativity". Communications in Mathematical Physics. 25 (2): 152–166. doi:10.1007/BF01877517. S2CID   121527613.
  177. Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID   120254309.
  178. Cho, Adrian (October 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved May 20, 2019.
  179. Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains" (PDF). Science . 177 (4044): 166–168. Bibcode:1972Sci...177..166H. doi:10.1126/science.177.4044.166. PMID   17779917. S2CID   10067969.
  180. Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Observed Relativistic Time Gains" (PDF). Science . 177 (4044): 168–170. Bibcode:1972Sci...177..168H. doi:10.1126/science.177.4044.168. PMID   17779918. S2CID   37376002.
  181. Wick, Gerald (February 3, 1972). "The clock paradox resolved". New Scientist: 261–263.
  182. Teukolsky, Saul (1972). "Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations" (PDF). Physical Review Letters. 29 (16): 1114–1118. Bibcode:1972PhRvL..29.1114T. doi:10.1103/PhysRevLett.29.1114. S2CID   122083437.
  183. Bardeen, John M.; Carter, Brandon; Hawking, Stephen (June 1973). "The four laws of black hole mechanics" (PDF). Communications in Mathematical Physics. 31 (2): 161–170. Bibcode:1973CMaPh..31..161B. doi:10.1007/BF01645742. S2CID   54690354.
  184. Bardeen, James M. (1973). "Timelike and null geodesics in the Kerr metric". Proceedings, École d'Été de Physique Théorique: Les Astres Occlus: Les Houches, France, August, 1972: 215–240. Bibcode:1973blho.conf..215B. ISBN   9780677156101.
  185. Overbye, Dennis (July 3, 2022). "James Bardeen, an Expert on Unraveling Einstein's Equations, Dies at 83". The New York Times. Archived from the original on July 3, 2022. Retrieved May 8, 2023.
  186. Kaiser, David (2012). "A Tale of Two Textooks". Isis. 103 (1). University of Chicago Press: 126–138. doi:10.1086/664983. hdl: 1721.1/82907 . PMID   22655343.
  187. Dahn, Ryan (March 10, 2023). "Gravitation's attraction, 50 years later". Physics Today. Retrieved July 31, 2023.
  188. H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics. 14 (1): 104–118. Bibcode:1973JMP....14..104E. doi:10.1063/1.1666161.
  189. Matson, John (Oct 1, 2010). "Artificial event horizon emits laboratory analogue to theoretical black hole radiation". Sci. Am.
  190. Hawking, Stephen (March 1, 1974). "Black Hole Explosions?". Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. S2CID   4290107.
  191. Hawking, Stephen (1975). "Particle Creation by Black Holes". Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID   55539246.
  192. Collela, Roberto; Overhauser, Albert; Werner, Samuel (1975). "Observation of Gravitationally Induced Quantum Interference". Physical Review Letters. 34 (1472): 1472–1474. Bibcode:1975PhRvL..34.1472C. doi:10.1103/PhysRevLett.34.1472.
  193. Staudenmann, J. -L.; Collela, Roberto; Werner, Samuel; Overhauser, Albert (1980). "Gravity and Inertia in Quantum Mechanics". Physical Review A. 21 (1419): 1419–1438. Bibcode:1980PhRvA..21.1419S. doi:10.1103/PhysRevA.21.1419.
  194. Abele, Hartmut; Leeb, Helmut (2012). "Gravitation and quantum interference experiments with neutrons". New Journal of Physics. 14 (5): 055010. arXiv: 1207.2953 . Bibcode:2012NJPh...14e5010A. doi:10.1088/1367-2630/14/5/055010. ISSN   1367-2630. S2CID   53653704.
  195. Townsend, John S. (2012). "Section 8.7: Quantum Interference due to Gravity". A Modern Approach to Quantum Mechanics (2nd ed.). University Science Books. pp. 297–99. ISBN   978-1-891389-78-8.
  196. Chandrasekhar, S.; Detweiler, S. (1975). "The quasi-normal modes of the Schwarzchild black hole". Proc. R. Soc. Lond. A. 344 (1639): 441–452. Bibcode:1975RSPSA.344..441C. doi:10.1098/rspa.1975.0112.
  197. D.Walsh; R.F.Carswell; R.J.Weymann (31 May 1979). "0957 + 561 A, B: twin quasistellar objects or gravitational lens?" (PDF). Nature. 279 (5712): 381–384. Bibcode:1979Natur.279..381W. doi:10.1038/279381a0. PMID   16068158. S2CID   2142707.
  198. Luminet, Jean-Pierre (1979). "Image of a spherical black hole with thin accretion disk". Astronomy and Astrophysics. 75 (1–2): 228–235. Bibcode:1979A&A....75..228L.
  199. "First ever image of a black hole: a CNRS researcher had simulated it as early as 1979". Espace presse. CNRS. April 10, 2019. Retrieved May 24, 2023.
  200. Detweiler, Steven L. (1979). "Pulsar timing measurements and the search for gravitational waves". Astrophys. J. 234: 1100. Bibcode:1979ApJ...234.1100D. doi:10.1086/157593.
  201. Schoen, Robert; Yau, Shing-Tung (1979). "On the proof of the positive mass conjecture in general relativity". Communications in Mathematical Physics . 65 (1): 45. Bibcode:1979CMaPh..65...45S. doi:10.1007/BF01940959. S2CID   54217085.
  202. Schoen, Robert; Yau, Shing-Tung (1981). "Proof of the positive mass theorem. II". Communications in Mathematical Physics . 79 (2): 231. Bibcode:1981CMaPh..79..231S. doi:10.1007/BF01942062. S2CID   59473203.
  203. Witten, Edward (1981). "A new proof of the positive energy theorem". Communications in Mathematical Physics . 80 (3): 381–402. Bibcode:1981CMaPh..80..381W. doi:10.1007/BF01208277. S2CID   1035111.
  204. Rubin, Vera; et al. (June 1980). "Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". Astrophysical Journal. 238: 471–487. Bibcode:1980ApJ...238..471R. doi: 10.1086/158003 .
  205. Nemiroff, Robert; Bonnell, Jerry (April 5, 2023). "Rubin's Galaxy". Astronomy Picture of the Day. NASA. Retrieved April 18, 2023.
  206. Vessot, R. F. C.; et al. (1980). "Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser" (PDF). Physical Review Letters. 45 (26): 2081–2084. Bibcode:1980PhRvL..45.2081V. doi:10.1103/PhysRevLett.45.2081.
  207. Bardeen, James M. (1980). "Gauge-invariant cosmological perturbations" (PDF). Physical Review D. 22 (8): 1882–1905. Bibcode:1980PhRvD..22.1882B. doi:10.1103/PhysRevD.22.1882.
  208. Guth, Alan (15 January 1981). "Inflationary universe: A possible solution to the horizon and flatness problems". Physical Review D . 23 (2): 347–356. Bibcode:1981PhRvD..23..347G. doi: 10.1103/PhysRevD.23.347 .
  209. Taylor, J. H.; Weisberg, J. M. (1982). "A new test of general relativity – Gravitational radiation and the binary pulsar PSR 1913+16". Astrophysical Journal. 253: 908–920. Bibcode:1982ApJ...253..908T. doi:10.1086/159690.
  210. Hartle, J.; Hawking, S. (1983). "Wave function of the Universe". Physical Review D. 28 (12): 2960. Bibcode:1983PhRvD..28.2960H. doi:10.1103/PhysRevD.28.2960. S2CID   121947045.
  211. Friedrich, Helmut (1986). "On the existence of -geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure". Communications in Mathematical Physics. 107 (4): 587–609. Bibcode:1986CMaPh.107..587F. doi:10.1007/BF01205488. S2CID   121761845.
  212. 1 2 3 Nadis, Steve (May 11, 2020). "New Math Proves That a Special Kind of Space-Time Is Unstable". Quanta Magazine. Retrieved January 6, 2023.
  213. Schultz, Bernard (1986). "Determining the Hubble constant from gravitational wave observations". Nature. 323 (6086): 310–311. Bibcode:1986Natur.323..310S. doi:10.1038/323310a0. hdl: 11858/00-001M-0000-0013-73C1-2 . S2CID   4327285.
  214. Morris, Mike; Thorne, Kip; Yurtsever, Ulvi (1986). "Wormholes, Time Machines, and the Weak Energy Condition". Physical Review Letters. 61 (1446): 1446–1449. doi:10.1103/PhysRevLett.61.1446. PMID   10038800.
  215. Morris, Michael S. & Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics . 56 (5): 395–412. Bibcode:1988AmJPh..56..395M. doi: 10.1119/1.15620 .
  216. Weinberg, Steven (1989). "The Cosmological Constant Problem". Physical Review Letters. 61 (1): 1–23. Bibcode:1989RvMP...61....1W. doi:10.1103/RevModPhys.61.1. hdl: 2152/61094 . S2CID   122259372.
  217. Smoot, G. F.; et al. (1992). "Structure in the COBE differential microwave radiometer first-year maps". Astrophysical Journal Letters . 396 (1): L1–L5. Bibcode:1992ApJ...396L...1S. doi: 10.1086/186504 . S2CID   120701913.
  218. Bennett, C.L.; et al. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". Astrophysical Journal Letters . 464: L1–L4. arXiv: astro-ph/9601067 . Bibcode:1996ApJ...464L...1B. doi:10.1086/310075. S2CID   18144842.
  219. Hawking, Stephen (1992). "Chronology Protection Conjecture". Physical Review D. 46 (603): 603–611. Bibcode:1992PhRvD..46..603H. doi:10.1103/PhysRevD.46.603. PMID   10014972.
  220. Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press. ISBN   0-691-08777-6.
  221. Donoghue, John F. (1994). "General relativity as an effective field theory: The leading quantum corrections". Physical Review D. 50 (3874): 3874–3888. arXiv: gr-qc/9405057 . Bibcode:1994PhRvD..50.3874D. doi:10.1103/PhysRevD.50.3874. PMID   10018030. S2CID   14352660.
  222. Goldberger, Walter; Rothstein, Ira (2004). "An Effective Field Theory of Gravity for Extended Objects". Physical Review D. 73 (10): 104029. arXiv: hep-th/0409156 . doi:10.1103/PhysRevD.73.104029. S2CID   54188791.
  223. "Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years". NASA. 1995. Retrieved January 12, 2009.
  224. "A Bull's Eye for MERLIN and the Hubble". University of Manchester. 27 March 1998.
  225. Browne, Malcolm W. (1998-03-31). "'Einstein Ring' Caused by Space Warping Is Found". The New York Times. Retrieved 2010-05-01.
  226. Reiss, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John (1998). "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant". The Astronomical Journal . 116 (3): 1009–1038. arXiv: astro-ph/9805201 . Bibcode:1998AJ....116.1009R. doi:10.1086/300499. S2CID   15640044.