Timeline of gravitational physics and relativity

Last updated

The following is a timeline of gravitational physics and general relativity .

Contents

Before 1500

1500s

1600s

Geometric diagram for Newton's proof of Kepler's second law. Principia1846-105.png
Geometric diagram for Newton's proof of Kepler's second law.

1700s

Lagrange points Lagrange very massive.svg
Lagrange points

1800s

1900s

The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964. USS Enterprise (CVAN-65), USS Long Beach (CGN-9) and USS Bainbridge (DLGN-25) underway in the Mediterranean Sea during Operation Sea Orbit, in 1964.jpg
The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964.

1910s

Einstein's 1911 argument for gravitational redshift Einstein's argument that falling light acquires energy.svg
Einstein's 1911 argument for gravitational redshift

1920s

1930s

The Einstein Cross, an example of gravitational lensing at work Einstein cross.jpg
The Einstein Cross, an example of gravitational lensing at work

1940s

1950s

1960s

1970s

Image of Cygnus X-1 by the Chandra X-ray Observatory (2009) Chandra image of Cygnus X-1.jpg
Image of Cygnus X-1 by the Chandra X-ray Observatory (2009)

1980s

1990s

Parameter space of various approximation techniques in general relativity GR2bodyparameterspace.png
Parameter space of various approximation techniques in general relativity

2000s

2010s

Improving cosmological measurements by three different satellites PIA16874-CobeWmapPlanckComparison-20130321.jpg
Improving cosmological measurements by three different satellites

2020s

The size of Sagittarius A* is smaller than the orbit of Mercury. Eso2208-eht-mwe.tif
The size of Sagittarius A* is smaller than the orbit of Mercury.

See also

Related Research Articles

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, including light and other electromagnetic waves, is capable of possessing enough energy to escape it. Einstein's theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. A black hole has a great effect on the fate and circumstances of an object crossing it, but it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum. Other characteristics are uniquely determined by these three parameters, and all other information about the matter that formed a black hole or is falling into it "disappears" behind the black-hole event horizon and is therefore permanently inaccessible to external observers after the black hole "settles down". Physicist John Archibald Wheeler expressed this idea with the phrase "black holes have no hair", which was the origin of the name.

The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present. The time delay is caused by time dilation, which increases the time it takes light to travel a given distance from the perspective of an outside observer. In a 1964 article entitled Fourth Test of General Relativity, Irwin Shapiro wrote:

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10−4 sec when the radar pulses pass near the sun. Such a change, equivalent to 60 km in distance, could now be measured over the required path length to within about 5 to 10% with presently obtainable equipment.

<span class="mw-page-title-main">PSR J0737−3039</span> Double pulsar in the constellation Puppis

PSR J0737−3039 is the first known double pulsar. It consists of two neutron stars emitting electromagnetic waves in the radio wavelength in a relativistic binary system. The two pulsars are known as PSR J0737−3039A and PSR J0737−3039B. It was discovered in 2003 at Australia's Parkes Observatory by an international team led by the Italian radio astronomer Marta Burgay during a high-latitude pulsar survey.

Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954. A more accurate program starting in 1959 tested general relativity in the weak gravitational field limit, severely limiting possible deviations from the theory.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena described by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is an emerging field of science, concerning the observations of gravitational waves to collect relatively unique data and make inferences about objects such as neutron stars and black holes, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.

In classical theories of gravitation, the changes in a gravitational field propagate. A change in the distribution of energy and momentum of matter results in subsequent alteration, at a distance, of the gravitational field which it produces. In the relativistic sense, the "speed of gravity" refers to the speed of a gravitational wave, which, as predicted by general relativity and confirmed by observation of the GW170817 neutron star merger, is equal to the speed of light (c).

<span class="mw-page-title-main">Alessandra Buonanno</span> Italian-American physicist

Alessandra Buonanno is an Italian-American theoretical physicist and director at the Max Planck Institute for Gravitational Physics in Potsdam. She is the head of the "Astrophysical and Cosmological Relativity" department. She holds a research professorship at the University of Maryland, College Park, and honorary professorships at the Humboldt University in Berlin, and the University of Potsdam. She is a leading member of the LIGO Scientific Collaboration, which observed gravitational waves from a binary black-hole merger in 2015.

Hořava–Lifshitz gravity is a theory of quantum gravity proposed by Petr Hořava in 2009. It solves the problem of different concepts of time in quantum field theory and general relativity by treating the quantum concept as the more fundamental so that space and time are not equivalent (anisotropic) at high energy level. The relativistic concept of time with its Lorentz invariance emerges at large distances. The theory relies on the theory of foliations to produce its causal structure. It is related to topologically massive gravity and the Cotton tensor. It is a possible UV completion of general relativity. Also, the speed of light goes to infinity at high energies. The novelty of this approach, compared to previous approaches to quantum gravity such as Loop quantum gravity, is that it uses concepts from condensed matter physics such as quantum critical phenomena. Hořava's initial formulation was found to have side-effects such as predicting very different results for a spherical Sun compared to a slightly non-spherical Sun, so others have modified the theory. Inconsistencies remain, though progress was made on the theory. Nevertheless, observations of gravitational waves emitted by the neutron-star merger GW170817 contravene predictions made by this model of gravity. Some have revised the theory to account for this.

<span class="mw-page-title-main">Hughes–Drever experiment</span>

Hughes–Drever experiments are spectroscopic tests of the isotropy of mass and space. Although originally conceived of as a test of Mach's principle, they are now understood to be an important test of Lorentz invariance. As in Michelson–Morley experiments, the existence of a preferred frame of reference or other deviations from Lorentz invariance can be tested, which also affects the validity of the equivalence principle. Thus these experiments concern fundamental aspects of both special and general relativity. Unlike Michelson–Morley type experiments, Hughes–Drever experiments test the isotropy of the interactions of matter itself, that is, of protons, neutrons, and electrons. The accuracy achieved makes this kind of experiment one of the most accurate confirmations of relativity .

<span class="mw-page-title-main">Modern searches for Lorentz violation</span> Overview about the modern searches for Lorentz violation

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

<span class="mw-page-title-main">Binary black hole</span> System consisting of two black holes in close orbit around each other

A binary black hole (BBH), or black hole binary, is a system consisting of two black holes in close orbit around each other. Like black holes themselves, binary black holes are often divided into stellar binary black holes, formed either as remnants of high-mass binary star systems or by dynamic processes and mutual capture; and binary supermassive black holes, believed to be a result of galactic mergers.

<span class="mw-page-title-main">Tsvi Piran</span> Israeli theoretical physicist and astrophysicist (born 1949)

Tsvi Piran is an Israeli theoretical physicist and astrophysicist, best known for his work on Gamma-ray Bursts (GRBs) and on numerical relativity. The recipient of the 2019 EMET prize award in Physics and Space Research.

<span class="mw-page-title-main">First observation of gravitational waves</span> 2015 direct detection of gravitational waves by the LIGO and VIRGO interferometers

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

Manuela Campanelli is a distinguished professor of astrophysics of the Rochester Institute of Technology,. She also holds the John Vouros endowed professorship at RIT and is the director of its Center for Computational Relativity and Gravitation. Her work focuses on the astrophysics of merging black holes and neutron stars, which are powerful sources of gravitational waves, electromagnetic radiation and relativistic jets. This research is central to the fields of relativistic astrophysics and gravitational-wave astronomy.

Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion. The theory was first proposed by Gregory Horndeski in 1974 and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy. Horndeski's theory contains many theories of gravity, including General relativity, Brans-Dicke theory, Quintessence, Dilaton, Chameleon and covariant Galileon as special cases.

PyCBC is an open source software package primarily written in the Python programming language which is designed for use in gravitational-wave astronomy and gravitational-wave data analysis. PyCBC contains modules for signal processing, FFT, matched filtering, gravitational waveform generation, among other tasks common in gravitational-wave data analysis.

References

  1. 1 2 Bauer, Susan Wise (2015). "Chapter Seven: The Last Ancient Astronomer". The Story of Science from the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN   978-0-393-24326-0.
  2. Gribbin, John (2003). "Chapter 3: The First Scientists". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 76–7. ISBN   978-1-400-06013-9.
  3. 1 2 Pasachoff, Naomi; Pasachoff, Jay (2012). "Galileo Galilei". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN   978-0-500-25191-1.
  4. 1 2 Dolnick, Edward (2011). "Timeline". The Clockwork Universe: Isaac Newton, the Royal Society, and the Birth of the Modern World. New York: Harper Collins. ISBN   9780061719516.
  5. Bauer, Susan Wise (2015). "Chapter Ten: The Death of Aristotle". The Story of Science: From the Writings of Aristotle to the Big Bang Theory. New York: W. W. Norton & Company. ISBN   978-0-393-24326-0.
  6. 1 2 Iliffe, Rob (2012). "Isaac Newton". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN   978-0-500-25191-1.
  7. 1 2 Newton, Isaac (1999). The Principia: The Authoritative Translation and Guide. Translated by Cohen, I. Bernard; Whitman, Anne; Budenz, Julia. University of California Press. ISBN   978-0-520-29088-4.
  8. Kleppner, Daniel; Kolenkow, Robert J. (1973). "8.4: The Principle of Equivalence". An Introduction to Mechanics. McGraw-Hill. pp. 353–54. ISBN   0-07-035048-5.
  9. Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. Retrieved 16 June 2020 via Internet Archive.
  10. Sagan, Carl; Druyan, Ann (1997). Comet. New York: Random House. pp. 66–67. ISBN   978-0-3078-0105-0.
  11. De mundi systemate, Isaac Newton, London: J. Tonson, J. Osborn, & T. Longman, 1728.
  12. Newton, Isaac; Cohen, I. Bernard (2004-01-01). A Treatise of the System of the World. Courier Corporation. ISBN   978-0-486-43880-1.
  13. Maclaurin, Colin. A Treatise of Fluxions: In Two Books. 1. Vol. 1. Ruddimans, 1742.
  14. Chandrasekhar, Subrahmanyan (1969). "5: The Maclaurin Spheroids". Ellipsoidal Figures of Equilibrium. New Haven: Yale University Press. ISBN   978-0-30001-116-6.
  15. 1 2 Woolfson, M.M. (1993). "Solar System – its origin and evolution". Q. J. R. Astron. Soc. 34: 1–20. Bibcode:1993QJRAS..34....1W. For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
  16. Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D. (2006). Dynamical Systems, the Three-Body Problem, and Space Mission Design. p. 9. Archived from the original on 2008-05-27. Retrieved 2008-06-09. (16MB)
  17. Euler, Leonhard (1765). De motu rectilineo trium corporum se mutuo attrahentium (PDF).
  18. Euler L, Nov. Comm. Acad. Imp. Petropolitanae, 10, pp. 207–242, 11, pp. 152–184; Mémoires de l'Acad. de Berlin, 11, 228–249.
  19. Lagrange, Joseph-Louis (1867–92). "Tome 6, Chapitre II: Essai sur le problème des trois corps". Œuvres de Lagrange (in French). Gauthier-Villars. pp. 229–334.
  20. Cavendish, Henry (1798). "Experiments to Determine the Density of Earth". Philosophical Transactions of the Royal Society. 88: 469–526. doi: 10.1098/rstl.1798.0022 . JSTOR   106988.
  21. Clotfelter, B.E. (1987). "The Cavendish Experiment as Cavendish Knew It". American Journal of Physics. 55 (3): 210–213. Bibcode:1987AmJPh..55..210C. doi:10.1119/1.15214.
  22. s:On the Space Theory of Matter
  23. Michaelson, Albert A.; Morley, Edward W. (1887). "On the Relative Motion of the Earth and the Luminiferous Ether". American Journal of Science. 134 (333): 333–345. Bibcode:1887AmJS...34..333M. doi:10.2475/ajs.s3-34.203.333. S2CID   124333204.
  24. French, A. P. (1968). "Chapter 2: Perplexities in the Propagation of Light". Special Relativity. New York: W. W. Norton & Company. pp. 52–58. ISBN   0-393-09793-5.
  25. Bod, L.; Fischbach, E.; Marx, G.; Náray-Ziegler, Maria (31 Aug 1990). "One Hundred Years of the Eötvös Experiment". Archived from the original on October 22, 2012.
  26. Gerber, P. (1917) [1902]. "Die Fortpflanzungsgeschwindigkeit der Gravitation". Annalen der Physik. 52 (4): 415–444. Bibcode:1917AnP...357..415G. doi:10.1002/andp.19173570404. (Originally published in Programmabhandlung des städtischen Realgymnasiums zu Stargard i. Pomm., 1902)
  27. 1 2 Robinson, Andrew (2012). "Albert Einstein". In Robinson, Andrew (ed.). The Scientists: An Epic of Discovery. New York: Thames and Hudson. ISBN   978-0-500-25191-1.
  28. Einstein, Albert (1905). "Zur Elektrodynamik bewegter Körper" [On the Electrodynamics of Moving Bodies](PDF). Annalen der Physik. Series 4. 17 (10): 891–921. Bibcode:1905AnP...322..891E. doi:10.1002/andp.19053221004.
  29. Einstein, Albert (1905). "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" [Does the Inertia of a Body Depend upon its Energy Content?](PDF). Annalen der Physik. Series 4. 18 (13): 639–641. Bibcode:1905AnP...323..639E. doi:10.1002/andp.19053231314. S2CID   122309633.
  30. Einstein, Albert (1935). "Elementary derivation of the equivalence of mass and energy" (PDF). Bulletin of the American Mathematical Society . 41 (4): 223–230. doi:10.1090/S0002-9904-1935-06046-X.
  31. Hecht, Eugene (2011). "How Einstein Confirmed ". American Journal of Physics. 79: 591–600. doi:10.1119/1.3549223.
  32. Einstein, Albert (1907). "Relativitätsprinzip und die aus demselben gezogenen Folgerungen" [On the Relativity Principle and the Conclusions Drawn from It](PDF). Jahrbuch der Radioaktivität (4): 411–462.
  33. Eddington, A. S. (1926). "Einstein Shift and Doppler Shift". Nature. 117 (2933): 86. Bibcode:1926Natur.117...86E. doi: 10.1038/117086a0 . ISSN   1476-4687. S2CID   4092843.
  34. Minkowski, Hermann (1915). "Das Relativitätsprinzip". Annalen der Physik. 352 (15): 927–938. Bibcode:1915AnP...352..927M. doi:10.1002/andp.19153521505.
  35. Corry, Leo (1997). "Hermann Minkowski and the Postulate of Relativity" (PDF). Archive for History of Exact Sciences. 51 (4): 273–314. doi:10.1007/BF00518231. S2CID   27016039.
  36. Gribbin, John (2004). "11. Let There be Light". The Scientists: A History of Science Told Through the Lives of Its Greatest Inventors. Random House. pp. 440–1. ISBN   978-0-812-96788-3.
  37. Born, Max (1909). "Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips" [The theory of the rigid electron in the kinematics of the principle of relativity]. Annalen der Physik (in German). 355 (11): 1–56. Bibcode:1909AnP...335....1B. doi:10.1002/andp.19093351102.
  38. Born, Max (1909). "Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips". Physikalische Zeitschrift. 10: 814–17.
  39. Ehrenfest, Paul (1909). "Gleichförmige Rotation starrer Körper und Relativitätstheorie" [Uniform Rotation of Rigid Bodies and Theory of Relativity]. Physikalische Zeitschrift (in German). 10 (918): 918. Bibcode:1909PhyZ...10..918E.
  40. Weber, T. A. (1997). "A note on rotating coordinates in relativity". American Journal of Physics. 65 (6): 486–7. Bibcode:1997AmJPh..65..486W. doi:10.1119/1.18575.
  41. Einstein, Albert (1911). "Einfluss der Schwerkraft auf die Ausbreitung des Lichtes" [On the Influence of Gravitation upon the Propagation of Light](PDF). Annalen der Physik. Series 4 (in German). 35: 898–908. doi:10.1002/andp.19113401005.
  42. Einstein, Albert (1915). "Feldgleichungen der Gravitation" [Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847.
  43. Einstein, Albert (1915). "Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie" [Explanation of the Perihelion Motion of Mercury from the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 831–839. Bibcode:1915SPAW.......831E.
  44. Einstein, Albert (1916). "Grundlage der allgemeinen Relativitätstheorie" [The Foundation of the General Theory of Relativity](PDF). Annalen der Physik. 4 (7): 769–822. Bibcode:1916AnP...354..769E. doi:10.1002/andp.19163540702.
  45. Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407
  46. Marsden, Jerrold; Tromba, Anthony (2012). "7.7 Applications to Differential Geometry, Physics, and Forms of Life". Vector Calculus (6th ed.). New York: W. H. Freeman Company. p. 422. ISBN   978-1-4292-1508-4.
  47. Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie" [On the Gravitational Field of a Point Mass According to Einstein's Theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  48. Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit" [On the Gravitational Field of a Sphere of Incompressible Fluid]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  49. Levy, Adam (January 11, 2021). "How black holes morphed from theory to reality". Knowable Magazine. doi: 10.1146/knowable-010921-1 . Retrieved 25 March 2022.
  50. Eisenstaedt, "The Early Interpretation of the Schwarzschild Solution," in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
  51. Bartusiak, Marcia (2015). "Chapter 3: One Would Then Find Oneself... in a Geometrical Fairyland". Black Hole: How An Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN   978-0-300-21085-9.
  52. Einstein, Albert (1916). "Näherungsweise Integration der Feldgleichungen der Gravitation" [Approximate Integration of the Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 688–696. Bibcode:1916SPAW.......688E.
  53. de Sitter, W (1916). "On Einstein's Theory of Gravitation and its Astronomical Consequences". Mon. Not. R. Astron. Soc. 77: 155–184. Bibcode:1916MNRAS..77..155D. doi: 10.1093/mnras/77.2.155 .
  54. Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" [Cosmological Considerations in the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German). 1: 142–152.
  55. The Internal Constitution of the Stars A. S. Eddington The Scientific Monthly Vol. 11, No. 4 (Oct., 1920), pp. 297–303 JSTOR   6491
  56. Eddington, A. S. (1916). "On the radiative equilibrium of the stars". Monthly Notices of the Royal Astronomical Society. 77: 16–35. Bibcode:1916MNRAS..77...16E. doi: 10.1093/mnras/77.1.16 .
  57. Einstein, Albert (1918). "Gravitationswellen" [Gravitational Waves]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 154–167.
  58. Holz, Daniel; Hughes, Scott; Bernard, Schultz (December 2018). "Measuring cosmic distances with standard sirens". Physics Today. 71 (12): 34. Bibcode:2018PhT....71l..34H. doi: 10.1063/PT.3.4090 . S2CID   125545290.
  59. Thirring, H. (1918). "Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 33. Bibcode:1918PhyZ...19...33T. [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
  60. Thirring, H. (1921). "Berichtigung zu meiner Arbeit: 'Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie'". Physikalische Zeitschrift. 22: 29. Bibcode:1921PhyZ...22...29T. [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
  61. Lense, J.; Thirring, H. (1918). "Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie". Physikalische Zeitschrift. 19: 156–163. Bibcode:1918PhyZ...19..156L. [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
  62. Dyson, F.W.; Eddington, A.S.; Davidson, C.R. (1920). "A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Solar eclipse of May 29, 1919". Philosophical Transactions of the Royal Society A . 220 (571–581): 291–333. Bibcode:1920RSPTA.220..291D. doi: 10.1098/rsta.1920.0009 .
  63. Kennefick, Daniel (1 March 2009). "Testing relativity from the 1919 eclipse – a question of bias". Physics Today. 62 (3): 37–42. Bibcode:2009PhT....62c..37K. doi: 10.1063/1.3099578 .
  64. David Kaiser, "How Politics Shaped General Relativity", New York Times, November 6, 2015.
  65. Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) (in German): 966–972. Bibcode:1921SPAW.......966K.
  66. Pais, Abraham (2000). "Chapter 7: Oskar Klein". The Genius of Science: A Portrait Gallery of Twentieth-Century Physicists. New York: Oxford University Press. ISBN   0-19-850614-7.
  67. Friedman, Alexander (December 1922). "Über die Krümmung des Raumes". Zeitschrift für Physik (in German). 10 (1): 377–386. Bibcode:1922ZPhy...10..377F. doi:10.1007/BF01332580. S2CID   125190902. Translated in: Friedmann, Alexander (December 1999). "On the Curvature of Space". General Relativity and Gravitation . 31 (12): 1991–2000. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741. S2CID   122950995.
  68. Marzlin, Karl-Peter (1994). "The physical meaning of Fermi coordinates". General Relativity and Gravitation. 26 (6): 619–636. arXiv: gr-qc/9402010 . Bibcode:1994GReGr..26..619M. doi:10.1007/BF02108003. S2CID   17918026.
  69. Segrè, Gino; Hoerlin, Bettina (2016). "Chapter 4: Student Days". The Pope of Physics. Henry Holt and Co. p. 27. ISBN   978-1-627-79005-5.
  70. Eddington, A. S. (1924). "On the relation between the masses and luminosities of the stars". Monthly Notices of the Royal Astronomical Society. 84 (5): 308–333. Bibcode:1924MNRAS..84..308E. doi: 10.1093/mnras/84.5.308 .
  71. Adams, W. S. (1925). "The Relativity Displacement of the Spectral Lines in the Companion of Sirius". Proceedings of the National Academy of Sciences. 11 (7): 382–387. Bibcode:1925PNAS...11..382A. doi: 10.1073/pnas.11.7.382 . PMC   1086032 . PMID   16587023.
  72. "Big bang theory is introduced – 1927". A Science Odyssey. WGBH. Retrieved 31 July 2014.
  73. Hubble, Edwin (15 March 1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae". Proceedings of the National Academy of Sciences . 15 (3): 168–173. Bibcode:1929PNAS...15..168H. doi: 10.1073/pnas.15.3.168 . PMC   522427 . PMID   16577160. Archived from the original on 1 October 2006. Retrieved 28 November 2019.
  74. Chandrasekhar, S. (1931). "The Density of White Dwarf Stars". Philosophical Magazine. 11 (70): 592–596. doi:10.1080/14786443109461710. S2CID   119906976.
  75. Chandrasekhar, S. (1931). "The Maximum Mass of Ideal White Dwarfs". Astrophysical Journal. 74: 81–82. Bibcode:1931ApJ....74...81C. doi: 10.1086/143324 .
  76. "Obituary: Georges Lemaitre". Physics Today. 19 (9): 119–121. September 1966. doi: 10.1063/1.3048455 .
  77. Lemaître, Georges; Eddington, Stanley (March 1931). "The Expanding Universe". Monthly Notices of the Royal Astronomical Society. 91 (5): 490–501. doi: 10.1093/mnras/91.5.490 .
  78. Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" [On the Cosmological Problem of the General Theory of Relativity]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 235–237.
  79. Einstein; and De Sitter (1932). "On the relation between the expansion and the mean density of the universe". Proceedings of the National Academy of Sciences. 18 (3): 213–214. Bibcode:1932PNAS...18..213E. doi: 10.1073/pnas.18.3.213 . PMC   1076193 . PMID   16587663.
  80. D. I., Blokhintsev; F. M., Gal'perin (1934). "Гипотеза нейтрино и закон сохранения энергии" [Neutrino hypothesis and conservation of energy]. Pod Znamenem Marxisma (in Russian). 6: 147–157. ISBN   978-5-04-008956-7.
  81. Farmelo, Graham (2009). The Strangest Man : The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber. pp. 367–368. ISBN   978-0-571-22278-0.
  82. Debnath, Lokenath (2013). "A short biography of Paul A. M. Dirac and historical development of Dirac delta function". International Journal of Mathematical Education in Science and Technology. 44 (8): 1201–1223. doi:10.1080/0020739X.2013.770091. ISSN   0020-739X.
  83. Baade, Walter; Zwicky, Fritz (1934). "Remarks on Super-novae and Cosmic Rays" (PDF). Physical Review. 46 (1): 76–77. Bibcode:1934PhRv...46...76B. doi:10.1103/PHYSREV.46.76.2.
  84. McCormick, Katie (July 18, 2023). "Ultracold Gases Can Probe Neutron Star Guts". Scientific American. Archived from the original on July 31, 2023. Retrieved July 31, 2023.
  85. A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev.48(73) (1935).
  86. Einstein, Albert (1936). "Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field". Science. 84 (2188): 506–507. Bibcode:1936Sci....84..506E. doi:10.1126/science.84.2188.506. PMID   17769014.
  87. F. Zwicky (1937). "Nebulae as Gravitational lenses" (PDF). Physical Review . 51 (4): 290. Bibcode:1937PhRv...51..290Z. doi:10.1103/PhysRev.51.290. Archived (PDF) from the original on 2013-12-26.
  88. Einstein, Albert & Rosen, Nathan (1937). "On Gravitational waves". Journal of the Franklin Institute. 223: 43–54. Bibcode:1937FrInJ.223...43E. doi:10.1016/S0016-0032(37)90583-0.
  89. Einstein, Albert; Infeld, Leopold; Hoffmann, Banesh (1938). "The Gravitational Equations and the Problem of Motion". Annals of Mathematics. 39 (1): 65–100. doi:10.2307/1968714. JSTOR   1968714.
  90. Lee, S.; Brown, G. E. (2007). "Hans Albrecht Bethe. 2 July 1906 — 6 March 2005: Elected ForMemRS 1957". Biographical Memoirs of Fellows of the Royal Society . 53: 1. doi: 10.1098/rsbm.2007.0018 .
  91. Tolman, Richard C. (1939). "Static Solutions of Einstein's Field Equations for Spheres of Fluid". Physical Review. 55 (364): 364–373. Bibcode:1939PhRv...55..364T. doi:10.1103/PhysRev.55.364.
  92. 1 2 3 4 Pais, Abraham; Crease, Robert (2006). J. Robert Oppenheimer: A Life. Oxford University Press. pp. 31–2. ISBN   978-0-195-32712-0.
  93. Oppenheimer, J.R.; Serber, Robert (1938). "On the Stability of Stellar Neutron Cores". Physical Review . 54 (7): 540. Bibcode:1938PhRv...54..540O. doi:10.1103/PhysRev.54.540.
  94. Oppenheimer, J.R.; Volkoff, G.M. (1939). "On Massive Neutron Cores" (PDF). Physical Review . 55 (4): 374–381. Bibcode:1939PhRv...55..374O. doi:10.1103/PhysRev.55.374. Archived (PDF) from the original on January 16, 2014. Retrieved January 15, 2014.
  95. Oppenheimer, J.R.; Snyder, H. (1939). "On Continued Gravitational Contraction". Physical Review . 56 (5): 455–459. Bibcode:1939PhRv...56..455O. doi: 10.1103/PhysRev.56.455 .
  96. Bartels, Megan (July 21, 2023). "Oppenheimer Almost Discovered Black Holes Before He Became 'Destroyer of Worlds'". Scientific American. Retrieved July 26, 2023.
  97. Alpher, R. A.; Herman, R. C. (1948). "On the Relative Abundance of the Elements". Physical Review . 74 (12): 1737–1742. Bibcode:1948PhRv...74.1737A. doi:10.1103/PhysRev.74.1737.
  98. Alpher, R. A.; Herman, R. C. (1948). "Evolution of the Universe". Nature . 162 (4124): 774–775. Bibcode:1948Natur.162..774A. doi:10.1038/162774b0. S2CID   4113488.
  99. Lanczos, Cornelius (1949-07-01). "Lagrangian Multiplier and Riemannian Spaces". Reviews of Modern Physics. 21 (3). American Physical Society (APS): 497–502. Bibcode:1949RvMP...21..497L. doi: 10.1103/revmodphys.21.497 . ISSN   0034-6861.
  100. Gödel, K., "An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation", Rev. Mod. Phys. 21, 447, published July 1, 1949.
  101. Gupta, Suraj N. (1952). "Quantization of Einstein's Gravitational Field: General Treatment". Proceedings of the Physical Society . Series A. 65 (8): 608–619. Bibcode:1952PPSA...65..608G. doi:10.1088/0370-1298/65/8/304.
  102. Deser, Stanley (1970). "Self-interaction and gauge invariance". General Relativity and Gravitation. 1 (1): 9–18. arXiv: gr-qc/0411023 . Bibcode:1970GReGr...1....9D. doi:10.1007/BF00759198. S2CID   14295121.
  103. 1 2 3 4 5 Preskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002). PDF link
  104. Kraichnan (1955). "Special-Relativistic Derivation of Generally Covariant Gravitation Theory". Physical Review. 98 (4): 1118–1122. Bibcode:1955PhRv...98.1118K. doi:10.1103/PhysRev.98.1118.
  105. Kraichnan (1956). "Possibility of unequal gravitational and inertial masses". Physical Review. 101 (1): 482–488. Bibcode:1956PhRv..101..482K. doi:10.1103/PhysRev.101.482.
  106. Bertotti, B. (1956-10-01). "On gravitational motion". Il Nuovo Cimento. 4 (4): 898–906. Bibcode:1956NCim....4..898B. doi:10.1007/BF02746175. ISSN   1827-6121. S2CID   120443098.
  107. Dewitt, Cécile M.; Rickles, Dean (1957). An Expanded Version of the Remarks by R.P. Feynman on the Reality of Gravitational Waves. EOS – Sources. Wright-Patterson Air Force Base. ISBN   9783945561294 . Retrieved 27 September 2016.
  108. Finkelstein, David (1958). "Past-Future Asymmetry of the Gravitational Field of a Point Particle". Physical Review. 110 (4): 965–967. Bibcode:1958PhRv..110..965F. doi:10.1103/PhysRev.110.965.
  109. Pound, Robert; Rebka, Glen (1959). "Gravitational Red-Shift in Nuclear Resonance". Physical Review Letters. 3 (439): 439–441. Bibcode:1959PhRvL...3..439P. doi: 10.1103/PhysRevLett.3.439 .
  110. Kruskal, Martin (1960). "Maximal Extension of Schwarzschild Metric". Physical Review Letters. 119 (1743): 1743–1745. Bibcode:1960PhRv..119.1743K. doi:10.1103/PhysRev.119.1743.
  111. Gibbon, John D.; Cowley, Steven C.; Joshi, Nalini; MacCallum, Malcolm A. H. (2017). "Martin David Kruskal. 28 September 1925 — 26 December 2006". Biographical Memoirs of Fellows of the Royal Society . 64: 261–284. arXiv: 1707.00139 . doi:10.1098/rsbm.2017.0022. ISSN   0080-4606. S2CID   67365148.
  112. Graves, John C.; Brill, Dieter R. (1960). "Oscillatory Character of Reissner-Nordström Metric for an Ideal Charged Wormhole". Physical Review Letters. 120 (4): 1507–1513. Bibcode:1960PhRv..120.1507G. doi:10.1103/PhysRev.120.1507.
  113. Robinson, Ivor; Trautman, A. (1960). "Spherical Gravitational Waves". Physical Review Letters. 4 (8). Cdsads.u-strasbg.fr: 431. Bibcode:1960PhRvL...4..431R. doi:10.1103/PhysRevLett.4.431 . Retrieved 2012-07-20.
  114. Pound, Robert; Rebka, Glen (1960). "Apparent Weight of Photons". Physical Review Letters. 4 (337): 337–341. Bibcode:1960PhRvL...4..337P. doi: 10.1103/PhysRevLett.4.337 .
  115. Tullio E. Regge (1961). "General relativity without coordinates". Nuovo Cimento. 19 (3): 558–571. Bibcode:1961NCim...19..558R. doi:10.1007/BF02733251. S2CID   120696638. Available (subscribers only) at Il Nuovo Cimento
  116. Bran, Carl; Dicke, Robert (1961). "Mach's Principle and a Relativistic Theory of Gravitation". Physical Review Letters. 124 (925): 925–935. Bibcode:1961PhRv..124..925B. doi:10.1103/PhysRev.124.925.
  117. Roll, P.G; Krotkov, R; Dicke, R.H (1964). "The equivalence of inertial and passive gravitational mass". Annals of Physics. 26 (3). Elsevier BV: 442–517. Bibcode:1964AnPhy..26..442R. doi:10.1016/0003-4916(64)90259-3. ISSN   0003-4916.
  118. Dicke, Robert H. (December 1961). "The Eötvös Experiment". Scientific American. 205 (6): 84–95. Bibcode:1961SciAm.205f..84D. doi:10.1038/scientificamerican1261-84.
  119. Wheeler, John; Fuller, Robert (1962). "Causality and Multiply Connected Space-Time". Physical Review Letters. 128 (919): 919–929. Bibcode:1962PhRv..128..919F. doi:10.1103/PhysRev.128.919.
  120. Goldberg, J. N.; Sachs, R. K. (1962). "A theorem on Petrov types (republished January 2009)". General Relativity and Gravitation. 41 (2): 433–444. doi:10.1007/s10714-008-0722-5. S2CID   122155922.; originally published in Acta Phys. Pol. 22, 13–23 (1962).
  121. Kerr, Roy P. (1963). "Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics". Physical Review Letters. 11 (5): 237–238. Bibcode:1963PhRvL..11..237K. doi:10.1103/PhysRevLett.11.237.
  122. Penrose, Roger (1963). "Asymptotic Properties of Fields and Space-Times". Physical Review Letters. 10 (66): 66–68. Bibcode:1963PhRvL..10...66P. doi: 10.1103/PhysRevLett.10.66 .
  123. Weinberg, Steven (1964). "Derivation of gauge invariance and the equivalence principle from Lorentz invariance of the S-matrix". Physics Letters. 9 (4): 357–359. Bibcode:1964PhL.....9..357W. doi:10.1016/0031-9163(64)90396-8.
  124. Weinberg, Steven (1964). "Photons and gravitons in S-matrix theory: derivation of charge conservation and equality of gravitational and inertial mass". Physical Review. 135 (4B): B1049–B1056. Bibcode:1964PhRv..135.1049W. doi:10.1103/PhysRev.135.B1049.
  125. Chandrasekhar, Subrahmanyan (1964). "Dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity". Physical Review Letters. 12 (4): 114–116. Bibcode:1964PhRvL..12..114C. doi:10.1103/PhysRevLett.12.114.
  126. Chiu, Hong-Yee (May 1964). "Gravitational collapse". Physics Today. 17 (5): 21–34. Bibcode:1964PhT....17e..21C. doi: 10.1063/1.3051610 . So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.
  127. Refsdal, Sjur (1964). "On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect". Monthly Notices of the Royal Astronomical Society. 128 (4): 307–310. doi: 10.1093/mnras/128.4.307 .
  128. Irwin I. Shapiro (1964). "Fourth Test of General Relativity". Physical Review Letters . 13 (26): 789–791. Bibcode:1964PhRvL..13..789S. doi:10.1103/PhysRevLett.13.789.
  129. "Haystack marks physics milestone". MIT News. July 14, 2005. Retrieved May 2, 2023.
  130. Penrose, Roger (1965). "Gravitational Collapse and Space-Time Singularities". Physical Review Letters. 14 (57): 57–59. Bibcode:1965PhRvL..14...57P. doi: 10.1103/PhysRevLett.14.57 .
  131. Newman, Ezra; Janis, Allen (1965). "Note on the Kerr Spinning-Particle Metric". Journal of Mathematical Physics . 6 (6): 915–917. Bibcode:1965JMP.....6..915N. doi:10.1063/1.1704350.
  132. Newman, Ezra; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. (1965). "Metric of a Rotating, Charged Mass". Journal of Mathematical Physics. 6 (6): 918–919. Bibcode:1965JMP.....6..918N. doi:10.1063/1.1704351.
  133. Penzias, A.A.; Wilson, R.W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal . 142: 419–421. Bibcode:1965ApJ...142..419P. doi: 10.1086/148307 .
  134. Bartusiak, Marcia (2015). "Chapter 9: Why Don't You Call It A Black Hole?". Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved. New Haven, CT: Yale University Press. ISBN   978-0-300-21085-9.
  135. 1 2 Moskowitz, Clara (March 1, 2019). "Neutron Stars: Nature's Weirdest Form of Matter". Scientific American.
  136. Deutsch, David; Isham, Christopher; Vilkovisky, Gregory (2005). "Bryce Seligman DeWitt". Physics Today. 58 (3): 84. Bibcode:2005PhT....58c..84D. doi:10.1063/1.1897570.
  137. Israel, Werner (1967). "Event Horizons in Static Vacuum Space-Times". Phys. Rev. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776.
  138. Israel, Werner (25 December 1967). "Event Horizons in Static Vacuum Space-Times". Physical Review. 164 (5): 1776–1779. Bibcode:1967PhRv..164.1776I. doi:10.1103/PhysRev.164.1776 via American Physical Society.
  139. Carter, Brandon (1968). "Global structure of the Kerr family of gravitational fields". Physical Review. 174 (5): 1559–1571. Bibcode:1968PhRv..174.1559C. doi:10.1103/PhysRev.174.1559.
  140. Irwin I. Shapiro; Gordon H. Pettengill; Michael E. Ash; Melvin L. Stone; et al. (1968). "Fourth Test of General Relativity: Preliminary Results". Physical Review Letters . 20 (22): 1265–1269. Bibcode:1968PhRvL..20.1265S. doi:10.1103/PhysRevLett.20.1265.
  141. Nordvedt, Kennet (1968). "Equivalence Principle for Massive Bodies. II. Theory". Physical Review Letters. 169 (1017): 1017–1025. Bibcode:1968PhRv..169.1017N. doi:10.1103/PhysRev.169.1017.
  142. Bonnor, William B. (1969). "The Gravitational Field of Light" (PDF). Communications in Mathematical Physics. 13 (3): 163–174. Bibcode:1969CMaPh..13..163B. doi:10.1007/BF01645484. S2CID   123398946.
  143. "Making Waves". TERP. 2016-08-18. Retrieved 2016-11-07.
  144. Cho, Adrian (February 15, 2016). "Remembering Joseph Weber, the controversial pioneer of gravitational waves". Science.
  145. David Kaiser, "Learning from Gravitational Waves", New York Times, October 3, 2017.
  146. Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento . Rivista Serie. 1: 252–276. Bibcode:1969NCimR...1..252P.
  147. Choquet-Bruhat, Yvonne; Geroch, Robert (1969). "Global aspects of the Cauchy problem in general relativity". Communications in Mathematical Physics. 14 (4): 329–335. Bibcode:1969CMaPh..14..329C. doi:10.1007/BF01645389. S2CID   121522405.
  148. Chandrasekhar, S. (1965). "The post-Newtonian equations of hydrodynamics in General Relativity". The Astrophysical Journal. 142: 1488. Bibcode:1965ApJ...142.1488C. doi:10.1086/148432.
  149. Chandrasekhar, S. (1967). "The post-Newtonian effects of General Relativity on the equilibrium of uniformly rotating bodies. II. The deformed figures of the MacLaurin spheroids". The Astrophysical Journal. 147: 334. Bibcode:1967ApJ...147..334C. doi:10.1086/149003.
  150. Chandrasekhar, S. (1969). "Conservation laws in general relativity and in the post-Newtonian approximations". The Astrophysical Journal. 158: 45. Bibcode:1969ApJ...158...45C. doi: 10.1086/150170 .
  151. Chandrasekhar, S.; Nutku, Y. (1969). "The second post-Newtonian equations of hydrodynamics in General Relativity". Relativistic Astrophysics. 86: 55. Bibcode:1969ApJ...158...55C. doi: 10.1086/150171 .
  152. Chandrasekhar, S.; Esposito, F.P. (1970). "The 2½-post-Newtonian equations of hydrodynamics and radiation reaction in General Relativity". The Astrophysical Journal. 160: 153. Bibcode:1970ApJ...160..153C. doi: 10.1086/150414 .
  153. Hawking, Stephen W.; Ellis, George F. R. (April 1968). "The Cosmic Black-Body Radiation and the Existence of Singularities in our Universe". The Astrophysical Journal . 152: 25. Bibcode:1968ApJ...152...25H. doi:10.1086/149520.
  154. Hawking, Stephen W.; Penrose, Roger (27 January 1970). "The Singularities of Gravitational Collapse and Cosmology". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences . 314 (1519): 529–548. Bibcode:1970RSPSA.314..529H. doi: 10.1098/rspa.1970.0021 .
  155. Goldhaber, Alfred; Nieto, Michael (1971). "Terrestrial and Extraterrestrial Limits on The Photon Mass". Reviews of Modern Physics. 43 (3). American Physical Society: 277–296. Bibcode:1971RvMP...43..277G. doi:10.1103/RevModPhys.43.277.
  156. Jackson, John David (1999). "Section I.2: Inverse Square Law or Mass of the Photon". Classical Electrodynamics (3rd ed.). New York: John Wiley & Sons. pp. 5–9. ISBN   0-471-30932-X.
  157. Hawking, Stephen (October 1971). "Black Holes in General Relativity". Communications in Mathematical Physics. 25 (2): 152–166. doi:10.1007/BF01877517. S2CID   121527613.
  158. Bekenstein, A. (1972). "Black holes and the second law". Lettere al Nuovo Cimento. 4 (15): 99–104. doi:10.1007/BF02757029. S2CID   120254309.
  159. Cho, Adrian (October 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved May 20, 2019.
  160. Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Predicted Relativistic Time Gains" (PDF). Science . 177 (4044): 166–168. Bibcode:1972Sci...177..166H. doi:10.1126/science.177.4044.166. PMID   17779917. S2CID   10067969.
  161. Hafele, J. C.; Keating, R. E. (July 14, 1972). "Around-the-World Atomic Clocks: Observed Relativistic Time Gains" (PDF). Science . 177 (4044): 168–170. Bibcode:1972Sci...177..168H. doi:10.1126/science.177.4044.168. PMID   17779918. S2CID   37376002.
  162. Wick, Gerald (February 3, 1972). "The clock paradox resolved". New Scientist: 261–263.
  163. Teukolsky, Saul (1972). "Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations" (PDF). Physical Review Letters. 29 (16): 1114–1118. Bibcode:1972PhRvL..29.1114T. doi:10.1103/PhysRevLett.29.1114. S2CID   122083437.
  164. Bardeen, John M.; Carter, Brandon; Hawking, Stephen (June 1973). "The four laws of black hole mechanics" (PDF). Communications in Mathematical Physics. 31 (2): 161–170. Bibcode:1973CMaPh..31..161B. doi:10.1007/BF01645742. S2CID   54690354.
  165. Bardeen, James M. (1973). "Timelike and null geodesics in the Kerr metric". Proceedings, École d'Été de Physique Théorique: Les Astres Occlus: Les Houches, France, August, 1972: 215–240. Bibcode:1973blho.conf..215B. ISBN   9780677156101.
  166. Overbye, Dennis (July 3, 2022). "James Bardeen, an Expert on Unraveling Einstein's Equations, Dies at 83". The New York Times. Archived from the original on July 3, 2022. Retrieved May 8, 2023.
  167. Kaiser, David (2012). "A Tale of Two Textooks". Isis. 103 (1). University of Chicago Press: 126–138. doi:10.1086/664983. hdl: 1721.1/82907 . PMID   22655343.
  168. Dahn, Ryan (March 10, 2023). "Gravitation's attraction, 50 years later". Physics Today. Retrieved July 31, 2023.
  169. H. G. Ellis (1973). "Ether flow through a drainhole: A particle model in general relativity". Journal of Mathematical Physics. 14 (1): 104–118. Bibcode:1973JMP....14..104E. doi:10.1063/1.1666161.
  170. Matson, John (Oct 1, 2010). "Artificial event horizon emits laboratory analogue to theoretical black hole radiation". Sci. Am.
  171. Hawking, Stephen (March 1, 1974). "Black Hole Explosions?". Nature. 248 (5443): 30–31. Bibcode:1974Natur.248...30H. doi:10.1038/248030a0. S2CID   4290107.
  172. Hawking, Stephen (1975). "Particle Creation by Black Holes". Communications in Mathematical Physics. 43 (3): 199–220. Bibcode:1975CMaPh..43..199H. doi:10.1007/BF02345020. S2CID   55539246.
  173. Collela, Roberto; Overhauser, Albert; Werner, Samuel (1975). "Observation of Gravitationally Induced Quantum Interference". Physical Review Letters. 34 (1472): 1472–1474. Bibcode:1975PhRvL..34.1472C. doi:10.1103/PhysRevLett.34.1472.
  174. Staudenmann, J. -L.; Collela, Roberto; Werner, Samuel; Overhauser, Albert (1980). "Gravity and Inertia in Quantum Mechanics". Physical Review A. 21 (1419): 1419–1438. Bibcode:1980PhRvA..21.1419S. doi:10.1103/PhysRevA.21.1419.
  175. Abele, Hartmut; Leeb, Helmut (2012). "Gravitation and quantum interference experiments with neutrons". New Journal of Physics. 14 (5): 055010. arXiv: 1207.2953 . Bibcode:2012NJPh...14e5010A. doi:10.1088/1367-2630/14/5/055010. ISSN   1367-2630. S2CID   53653704.
  176. Townsend, John S. (2012). "Section 8.7: Quantum Interference due to Gravity". A Modern Approach to Quantum Mechanics (2nd ed.). University Science Books. pp. 297–99. ISBN   978-1-891389-78-8.
  177. D.Walsh; R.F.Carswell; R.J.Weymann (31 May 1979). "0957 + 561 A, B: twin quasistellar objects or gravitational lens?" (PDF). Nature. 279 (5712): 381–384. doi:10.1038/279381a0. PMID   16068158. S2CID   2142707.
  178. Luminet, Jean-Pierre (1979). "Image of a spherical black hole with thin accretion disk". Astronomy and Astrophysics. 75 (1–2): 228–235. Bibcode:1979A&A....75..228L.
  179. "First ever image of a black hole: a CNRS researcher had simulated it as early as 1979". Espace presse. CNRS. April 10, 2019. Retrieved May 24, 2023.
  180. Schoen, Robert; Yau, Shing-Tung (1979). "On the proof of the positive mass conjecture in general relativity". Communications in Mathematical Physics . 65 (1): 45. Bibcode:1979CMaPh..65...45S. doi:10.1007/BF01940959. S2CID   54217085.
  181. Schoen, Robert; Yau, Shing-Tung (1981). "Proof of the positive mass theorem. II". Communications in Mathematical Physics . 79 (2): 231. Bibcode:1981CMaPh..79..231S. doi:10.1007/BF01942062. S2CID   59473203.
  182. Witten, Edward (1981). "A new proof of the positive energy theorem". Communications in Mathematical Physics . 80 (3): 381–402. Bibcode:1981CMaPh..80..381W. doi:10.1007/BF01208277. S2CID   1035111.
  183. Rubin, Vera; et al. (June 1980). "Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc)". Astrophysical Journal. 238: 471–487. Bibcode:1980ApJ...238..471R. doi: 10.1086/158003 .
  184. Nemiroff, Robert; Bonnell, Jerry (April 5, 2023). "Rubin's Galaxy". Astronomy Picture of the Day. NASA. Retrieved April 18, 2023.
  185. Vessot, R. F. C.; et al. (1980). "Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser" (PDF). Physical Review Letters. 45 (26): 2081–2084. Bibcode:1980PhRvL..45.2081V. doi:10.1103/PhysRevLett.45.2081.
  186. Bardeen, James M. (1980). "Gauge-invariant cosmological perturbations" (PDF). Physical Review D. 22 (8): 1882–1905. Bibcode:1980PhRvD..22.1882B. doi:10.1103/PhysRevD.22.1882.
  187. Guth, Alan (15 January 1981). "Inflationary universe: A possible solution to the horizon and flatness problems". Physical Review D . 23 (2): 347–356. Bibcode:1981PhRvD..23..347G. doi: 10.1103/PhysRevD.23.347 .
  188. Friedrich, Helmut (1986). "On the existence of -geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure". Communications in Mathematical Physics. 107 (4): 587–609. Bibcode:1986CMaPh.107..587F. doi:10.1007/BF01205488. S2CID   121761845.
  189. 1 2 3 Nadis, Steve (May 11, 2020). "New Math Proves That a Special Kind of Space-Time Is Unstable". Quanta Magazine. Retrieved January 6, 2023.
  190. Schultz, Bernard (1986). "Determining the Hubble constant from gravitational wave observations". Nature. 323 (6086): 310–311. Bibcode:1986Natur.323..310S. doi:10.1038/323310a0. hdl: 11858/00-001M-0000-0013-73C1-2 . S2CID   4327285.
  191. Morris, Mike; Thorne, Kip; Yurtsever, Ulvi (1986). "Wormholes, Time Machines, and the Weak Energy Condition". Physical Review Letters. 61 (1446): 1446–1449. doi:10.1103/PhysRevLett.61.1446. PMID   10038800.
  192. Morris, Michael S. & Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics . 56 (5): 395–412. Bibcode:1988AmJPh..56..395M. doi: 10.1119/1.15620 .
  193. Weinberg, Steven (1989). "The Cosmological Constant Problem". Physical Review Letters. 61 (1): 1–23. Bibcode:1989RvMP...61....1W. doi:10.1103/RevModPhys.61.1. hdl: 2152/61094 . S2CID   122259372.
  194. Hawking, Stephen (1992). "Chronology Protection Conjecture". Physical Review D. 46 (603): 603–611. Bibcode:1992PhRvD..46..603H. doi:10.1103/PhysRevD.46.603. PMID   10014972.
  195. Christodoulou, Demetrios; Klainerman, Sergiu (1993). The global nonlinear stability of the Minkowski space. Princeton: Princeton University Press. ISBN   0-691-08777-6.
  196. Donoghue, John F. (1994). "General relativity as an effective field theory: The leading quantum corrections". Physical Review D. 50 (3874): 3874–3888. arXiv: gr-qc/9405057 . Bibcode:1994PhRvD..50.3874D. doi:10.1103/PhysRevD.50.3874. PMID   10018030. S2CID   14352660.
  197. Goldberger, Walter; Rothstein, Ira (2004). "An Effective Field Theory of Gravity for Extended Objects". Physical Review D. 73 (10): 104029. arXiv: hep-th/0409156 . doi:10.1103/PhysRevD.73.104029. S2CID   54188791.
  198. "Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years". NASA. 1995. Retrieved January 12, 2009.
  199. "A Bull's Eye for MERLIN and the Hubble". University of Manchester. 27 March 1998.
  200. Browne, Malcolm W. (1998-03-31). "'Einstein Ring' Caused by Space Warping Is Found". The New York Times. Retrieved 2010-05-01.
  201. Smoot, G. F.; et al. (1992). "Structure in the COBE differential microwave radiometer first-year maps". Astrophysical Journal Letters . 396 (1): L1–L5. Bibcode:1992ApJ...396L...1S. doi: 10.1086/186504 . S2CID   120701913.
  202. Bennett, C.L.; et al. (1996). "Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results". Astrophysical Journal Letters . 464: L1–L4. arXiv: astro-ph/9601067 . Bibcode:1996ApJ...464L...1B. doi:10.1086/310075. S2CID   18144842.
  203. Reiss, Adam G.; Filippenko, Alexei V.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Leibundgut, B.; Phillips, M. M.; Reiss, David; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Spyromilio, J.; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John (1998). "Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant". The Astronomical Journal . 116 (3): 1009–1038. arXiv: astro-ph/9805201 . Bibcode:1998AJ....116.1009R. doi:10.1086/300499. S2CID   15640044.
  204. Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.M.; Couch, W.J. (1999). "Measurements of Omega and Lambda from 42 High-Redshift Supernovae". The Astrophysical Journal . 517 (2): 565–586. arXiv: astro-ph/9812133 . Bibcode:1999ApJ...517..565P. doi:10.1086/307221. S2CID   118910636.
  205. Buonanno, A.; Damour, T. (1999-03-08). "Effective one-body approach to general relativistic two-body dynamics". Physical Review D. 59 (8). American Physical Society (APS): 084006. arXiv: gr-qc/9811091 . Bibcode:1999PhRvD..59h4006B. doi:10.1103/physrevd.59.084006. ISSN   0556-2821. S2CID   14951569.
  206. Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016-06-07). "GW150914: First results from the search for binary black hole coalescence with Advanced LIGO". Physical Review D. 93 (12): 122003. arXiv: 1602.03839 . Bibcode:2016PhRvD..93l2003A. doi:10.1103/physrevd.93.122003. ISSN   2470-0010. PMC   7430253 . PMID   32818163. S2CID   217628912.
  207. Borde, Arvind; Guth, Alan H.; Vilenkin, Alexander (15 April 2003). "Inflationary space-times are incomplete in past directions". Physical Review Letters. 90 (15): 151301. arXiv: gr-qc/0110012 . Bibcode:2003PhRvL..90o1301B. doi:10.1103/PhysRevLett.90.151301. PMID   12732026. S2CID   46902994.
  208. Perlov, Delia; Vilenkin, Alexander (7 August 2017). Cosmology for the Curious. Cham, Switzerland: Springer. pp. 330–31. ISBN   978-3319570402.
  209. Williams, James G.; Turyshev, Slava G.; Boggs, Dale H. (2004). "Progress in Lunar Laser Ranging Tests of Relativistic Gravity". Physical Review Letters. 93 (261101): 261101. arXiv: gr-qc/0411113 . Bibcode:2004PhRvL..93z1101W. doi:10.1103/PhysRevLett.93.261101. PMID   15697965. S2CID   33664768.
  210. Holz, Daniel; Hughes, Scott (2005). "Using Gravitational-Wave Standard Sirens". Astrophysical Journal. 629 (1): 15–22. arXiv: astro-ph/0504616 . Bibcode:2005ApJ...629...15H. doi:10.1086/431341. hdl:1721.1/101190. S2CID   12017349.
  211. Everitt, C.W.F.; Parkinson, B.W. (2009). "Gravity Probe B Science Results—NASA Final Report" (PDF). Retrieved 2 May 2009.
  212. Everitt; et al. (2011). "Gravity Probe B: Final Results of a Space Experiment to Test General Relativity". Physical Review Letters. 106 (22): 221101. arXiv: 1105.3456 . Bibcode:2011PhRvL.106v1101E. doi:10.1103/PhysRevLett.106.221101. PMID   21702590. S2CID   11878715.
  213. Bennett, C. L.; et al. (2011). "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Are There Cosmic Microwave Background Anomalies?". Astrophysical Journal Supplement Series. 192 (2): 17. arXiv: 1001.4758 . Bibcode:2011ApJS..192...17B. doi:10.1088/0067-0049/192/2/17. S2CID   53521938.
  214. "Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe". NASA. September 25, 2012. Retrieved September 26, 2012.
  215. "NASA's NuSTAR Helps Solve Riddle of Black Hole Spin". NASA. 27 February 2013. Retrieved 3 March 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  216. LIGO-VIRGO Collaboration (2016). "Tests of general relativity with GW150914". Physical Review Letters. 116 (22): 22110. arXiv: 1602.03841 . Bibcode:2016PhRvL.116v1101A. doi:10.1103/PhysRevLett.116.221101. PMID   27314708. S2CID   217275338.
  217. Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters . 116 (24): 241103. arXiv: 1606.04855 . Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID   27367379. S2CID   118651851.
  218. Naeye, Robert (11 February 2016). "Gravitational Wave Detection Heralds New Era of Science". Sky and Telescope. Retrieved 11 February 2016.
  219. Pretorius, Frans (May 31, 2016). "Relativity Gets Thorough Vetting from LIGO". Physics. Vol. 9, no. 52. American Physical Society. Retrieved May 12, 2023.
  220. Chu, Jennifer (June 15, 2016). "For second time, LIGO detects gravitational waves". MIT News. Retrieved June 16, 2016.
  221. 1 2 Abbott, B. P.; et al. (October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv: 1710.05832 . Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID   29099225. S2CID   217163611.
  222. 1 2 Goldstein, A.; et al. (October 2017). "An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A". Astrophysical Review Letters. 848 (2): L14. arXiv: 1710.05446 . Bibcode:2017ApJ...848L..14G. doi: 10.3847/2041-8213/aa8f41 . S2CID   89613132.
  223. Savchenko, V.; et al. (October 2017). "INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817". Astrophysical Review Letters. 848 (2): L15. arXiv: 1710.05449 . Bibcode:2017ApJ...848L..15S. doi: 10.3847/2041-8213/aa8f94 . S2CID   54078722.
  224. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (2017). "Gravitational waves and gamma-rays from a binary neutron star merger: GW 170817 and GRB 170817A". The Astrophysical Journal Letters . 848 (2): L13. arXiv: 1710.05834 . Bibcode:2017ApJ...848L..13A. doi: 10.3847/2041-8213/aa920c .
  225. Abbott, B. P.; et al. (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger". The Astrophysical Journal Letters. 848 (2). L12. arXiv: 1710.05833 . Bibcode:2017ApJ...848L..12A. doi: 10.3847/2041-8213/aa91c9 . S2CID   217162243.
  226. McLaughlin, Maura (October 16, 2017). "Neutron Star Merger Seen and Heard". Physics. Vol. 10, no. 114. American Physical Society. Retrieved May 12, 2023.
  227. Cho A (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science . doi:10.1126/science.aar2149.
  228. Landau E, Chou F, Washington D, Porter M (16 October 2017). "NASA missions catch first light from a gravitational-wave event". NASA . Retrieved 16 October 2017.
  229. Johnson, Jennifer (2019). "Populating the periodic table: Nucleosynthesis of the elements". Science. 363 (6426): 474–478. Bibcode:2019Sci...363..474J. doi: 10.1126/science.aau9540 . PMID   30705182. S2CID   59565697.
  230. Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (October 25, 2021). "The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers". Astrophysical Review Letters. 920 (1): L3. arXiv: 2107.02714 . Bibcode:2021ApJ...920L...3C. doi: 10.3847/2041-8213/ac26c6 . S2CID   238198587.
  231. Watson, Darach; et al. (2019). "Identification of strontium in the merger of two neutron stars". Nature. 574 (7779): 497–500. arXiv: 1910.10510 . Bibcode:2019Natur.574..497W. doi:10.1038/s41586-019-1676-3. PMID   31645733. S2CID   204837882.
  232. Curtis, Sanjana (January 2023). "How Star Collisions Forge the Universe's Heaviest Elements". Scientific American: 30–7.
  233. Touboul, Pierre; et al. (8 December 2017). "MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle". Physical Review Letters. 119 (23). 231101. arXiv: 1712.01176 . Bibcode:2017PhRvL.119w1101T. doi:10.1103/PhysRevLett.119.231101. PMID   29286705. S2CID   6211162.
  234. MICROSCOPE Collaboration (2022). "MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle". Physical Review Letters. 129 (12): 121102. arXiv: 2209.15487 . Bibcode:2022PhRvL.129l1102T. doi:10.1103/PhysRevLett.129.121102. PMID   36179190. S2CID   252468544.
  235. Brax, Philippe (September 14, 2022). "Satellite Confirms the Principle of Falling". Physics. 15 (94). American Physical Society (APS): 94. Bibcode:2022PhyOJ..15...94B. doi: 10.1103/Physics.15.94 . S2CID   252801272.
  236. Tino, G. M.; et al. (2017). "Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states". Nature Communications. 8 (15529): 15529. arXiv: 1704.02296 . Bibcode:2017NatCo...815529R. doi:10.1038/ncomms15529. PMC   5461482 . PMID   28569742.
  237. LIGO-VIRGO Collaboration; 1M2H Collaboration; et al. (2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv: 1710.05835 . Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID   29094696. S2CID   205261622.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  238. Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, et al. (November 2017). "A gravitational-wave standard siren measurement of the Hubble constant". Nature. 551 (7678): 85–88. arXiv: 1710.05835 . Bibcode:2017Natur.551...85A. doi:10.1038/nature24471. PMID   29094696. S2CID   205261622.
  239. Chen HY, Fishbach M, Holz DE (October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv: 1712.06531 . Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID   30333628. S2CID   52987203.
  240. Akrami, Y.; et al. (Planck Collaboration) (2020). "Planck 2018 results. I. Overview, and the comological legacy of Planck". Astronomy & Astrophysics. 641: A1. arXiv: 1807.06205 . Bibcode:2020A&A...641A...1P. doi:10.1051/0004-6361/201833880. S2CID   119185252.
  241. Hartnett, Kevin (17 May 2018). "Mathematicians Disprove Conjecture Made to Save Black Holes". Quanta Magazine . Retrieved 29 March 2020.
  242. Advanced LIGO-VIRGO Collaboration (2018). "GW170817: Measurements of Neutron Star Radii and Equation of State". Physical Review Letters. 121 (161101): 161101. arXiv: 1805.11581 . Bibcode:2018PhRvL.121p1101A. doi:10.1103/PhysRevLett.121.161101. PMID   30387654. S2CID   53235598.
  243. Sokol, Joshua (June 5, 2018). "Gravitational Waves Reveal the Hearts of Neutron Stars". Scientific American.
  244. Rezzolla, L.; Most, E. R.; Weih, L. R. (2018). "Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars". Astrophysical Journal. 852 (2): L25. arXiv: 1711.00314 . Bibcode:2018ApJ...852L..25R. doi: 10.3847/2041-8213/aaa401 . S2CID   119359694.
  245. Pardo, Kris; Fishbach, Maya; Holz, Daniel E.; Spergel, David N. (2018). "Limits on the number of spacetime dimensions from GW170817". Journal of Cosmology and Astroparticle Physics. 2018 (7): 048. arXiv: 1801.08160 . Bibcode:2018JCAP...07..048P. doi:10.1088/1475-7516/2018/07/048. S2CID   119197181.
  246. Lerner, Louise (September 13, 2018). "Gravitational waves provide dose of reality about extra dimensions". UChicago News. Retrieved January 3, 2023.
  247. Lombriser L, Lima N (2017). "Challenges to self-acceleration in modified gravity from gravitational waves and large-scale structure". Phys. Lett. B. 765: 382–385. arXiv: 1602.07670 . Bibcode:2017PhLB..765..382L. doi:10.1016/j.physletb.2016.12.048. S2CID   118486016.
  248. Bettoni D, Ezquiaga JM, Hinterbichler K, Zumalacárregui M (14 April 2017). "Speed of gravitational waves and the fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv: 1608.01982 . Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN   2470-0010. S2CID   119186001.
  249. Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (December 2017). "Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A". Physical Review Letters. 119 (25): 251301. arXiv: 1710.06394 . Bibcode:2017PhRvL.119y1301B. doi:10.1103/PhysRevLett.119.251301. PMID   29303333. S2CID   36160359.
  250. LIGO-VIRGO Collaboration (2018). "Tests of General Relativity with GW170817". Physical Review Letters. 123 (1): 011102. arXiv: 1811.00364 . doi:10.1103/PhysRevLett.123.011102. PMID   31386391. S2CID   119214541.
  251. Creminelli P, Vernizzi F (December 2017). "Dark Energy after GW170817 and GRB170817A". Physical Review Letters. 119 (25): 251302. arXiv: 1710.05877 . Bibcode:2017PhRvL.119y1302C. doi:10.1103/PhysRevLett.119.251302. PMID   29303308. S2CID   206304918.
  252. Boran S, Desai S, Kahya E, Woodard R (2018). "GW 170817 falsifies dark matter emulators". Phys. Rev. D. 97 (4): 041501. arXiv: 1710.06168 . Bibcode:2018PhRvD..97d1501B. doi:10.1103/PhysRevD.97.041501. S2CID   119468128.
  253. Ezquiaga JM, Zumalacárregui M (December 2017). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters. 119 (25): 251304. arXiv: 1710.05901 . Bibcode:2017PhRvL.119y1304E. doi:10.1103/PhysRevLett.119.251304. PMID   29303304. S2CID   38618360.
  254. Sakstein J, Jain B (December 2017). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters. 119 (25): 251303. arXiv: 1710.05893 . Bibcode:2017PhRvL.119y1303S. doi:10.1103/PhysRevLett.119.251303. PMID   29303345. S2CID   39068360.
  255. Kitching, Thomas (December 12, 2017). "How crashing neutron stars killed off some of our best ideas about what 'dark energy' is". The Conversation. Retrieved January 5, 2023.
  256. Li, Qing; et al. (2018). "Measurements of the gravitational constant using two independent methods". Nature. 560 (7720): 582–588. Bibcode:2018Natur.560..582L. doi:10.1038/s41586-018-0431-5. PMID   30158607. S2CID   256770086.
  257. Schlamminger, Stephan (August 29, 2018). "Gravity measured with record precision". Nature. 560 (7720): 562–563. Bibcode:2018Natur.560..562S. doi: 10.1038/d41586-018-06028-6 . PMID   30158612.
  258. Temming, Maria (August 29, 2018). "The strength of gravity has been measured to new precision". Science News. Retrieved August 3, 2023.
  259. Event Horizon Telescope Collaboration (April 10, 2019). "First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole". Astrophysical Review Letters. 875 (1): L6. arXiv: 1906.11243 . Bibcode:2019ApJ...875L...6E. doi: 10.3847/2041-8213/ab1141 . S2CID   145969867.
  260. Landau, Elizabeth (April 10, 2019). "Black Hole Image Makes History". Jet Propulsion Laboratory, California Institute of Technology. Retrieved May 17, 2023.
  261. Event Horizon Telescope Collaboration (January 2024). "The persistent shadow of the supermassive black hole of M*87". Astronomy & Astrophysics. 681 (A79). doi: 10.1051/0004-6361/202347932 .
  262. Staff (2020). "GW190814 Factsheet: Lowest mass ratio to date: Strongest evidence of higher order modes" (PDF). LIGO . Retrieved 26 June 2020.
  263. Abbott, R.; et al. (23 June 2020). "GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object". The Astrophysical Journal Letters . 896 (2): L44. arXiv: 2006.12611 . Bibcode:2020ApJ...896L..44A. doi: 10.3847/2041-8213/ab960f .
  264. Asenbaum, Peter; Overstreet, Chris; Kim, Minjeong; Curti, Joseph; Kasevich, Mark A. (2020). "Atom-Interferometric Test of the Equivalence Principle at the 10−12 Level". Physical Review Letters. 125 (19): 191101. arXiv: 2005.11624 . Bibcode:2020PhRvL.125s1101A. doi:10.1103/PhysRevLett.125.191101. PMID   33216577. S2CID   218869931.
  265. Conover, Emily (October 28, 2020). "Galileo's famous gravity experiment holds up, even with individual atoms". Science News. Retrieved August 6, 2023.
  266. Bothwell, Tobias; Kennedy, Colin J.; Aeppli, Alexander; Kedar, Dhruv; Robinson, John M.; Oelker, Eric; Staron, Alexander; Ye, Jun (2022). "Resolving the gravitational redshift across a millimetre-scale atomic sample" (PDF). Nature. 602 (7897): 420–424. arXiv: 2109.12238 . Bibcode:2022Natur.602..420B. doi:10.1038/s41586-021-04349-7. PMID   35173346. S2CID   237940816.
  267. McCormick, Katie (2021-10-25). "An Ultra-Precise Clock Shows How to Link the Quantum World With Gravity". Quanta Magazine. Retrieved 2021-10-29.
  268. Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VII. Polarization of the Ring". Astrophysical Journal Letters. 910 (1): L12. arXiv: 2105.01169 . Bibcode:2021ApJ...910L..12E. doi: 10.3847/2041-8213/abe71d . S2CID   233715159.
  269. Event Horizon Telescope Collaboration (2021). "First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon". Astrophysical Journal Letters. 910 (1): L13. arXiv: 2105.01173 . Bibcode:2021ApJ...910L..13E. doi: 10.3847/2041-8213/abe4de . S2CID   233659565.
  270. Bower, Geoffrey C. (May 2022). "Focus on First Sgr A* Results from the Event Horizon Telescope". The Astrophysical Journal . Retrieved May 12, 2022.
  271. Overbye, Dennis (May 12, 2022). "The Milky Way's Black Hole Comes to Light". The New York Times . ISSN   0362-4331 . Retrieved May 12, 2022.
  272. Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way". Astrophysical Journal Letters. 930 (2): L12. Bibcode:2022ApJ...930L..12E. doi: 10.3847/2041-8213/ac6674 . hdl: 10261/278882 . S2CID   248744791.
  273. Event Horizon Telescope Collaboration (2022). "First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric". Astrophysical Journal Letters. 930 (2): L17. Bibcode:2022ApJ...930L..17E. doi: 10.3847/2041-8213/ac6756 . hdl: 10261/279267 . S2CID   248744741.
  274. Fletcher, Seth (September 2022). "Portrait of a Black Hole". Scientific American: 48–53. Archived from the original on September 25, 2022.
  275. Overstreet, Chris; Asenbaum, Peter; Curti, Joseph; Kim, Minjeong; Kasevich, Mark A. (January 14, 2022). "Observation of a gravitational Aharonov-Bohm effect". Science. 375 (6577): 226–229. Bibcode:2022Sci...375..226O. doi:10.1126/science.abl7152. ISSN   0036-8075. PMID   35025635. S2CID   245932980.
  276. Seigel, Ethan (January 18, 2022). "Has a new experiment just proven the quantum nature of gravity?". Big Think. Retrieved August 5, 2023.
  277. Conover, Emily (January 13, 2022). "Quantum particles can feel the influence of gravitational fields they never touch". Science News. Retrieved August 5, 2023.
  278. Hohensee, Michael A.; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger (June 7, 2012). "Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm Experiment". Physical Review Letters. 108 (23): 230404. arXiv: 1109.4887 . Bibcode:2012PhRvL.108w0404H. doi:10.1103/PhysRevLett.108.230404. ISSN   0031-9007. PMID   23003927. S2CID   22378148.
  279. Ehrenstein, David (June 7, 2012). "The Gravitational Aharonov-Bohm Effect". Physics. 5: s87. Bibcode:2012PhyOJ...5S..87.. doi:10.1103/Physics.5.s87.
  280. Garner, Rob (July 12, 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". NASA. Retrieved January 2, 2023.
  281. Dichiara, S.; Gropp, J. D.; Kennea, J. A.; Kuin, N. P. M.; Lien, A. Y.; Marshall, F. E.; Tohuvavohu, A.; Williams, M. A.; Neil Gehrels Swift Observatory Team (2022). "Swift J1913.1+1946 a new bright hard X-ray and optical transient". The Astronomer's Telegram. 15650: 1. Bibcode:2022ATel15650....1D.
  282. Plait, Phil (January 2023). "The Brightest Gamma-Ray Burst Ever Recorded Rattled Earth's Atmosphere". Scientific American: 56–7.
  283. Reddy, Francis (13 October 2022). "NASA's Swift, Fermi Missions Detect Exceptional Cosmic Blast". NASA's Goddard Space Flight Center.
  284. Adams, N.J.; et al. (January 2023). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society . 518 (3): 4755–4766. arXiv: 2207.11217 . doi:10.1093/mnras/stac3347 . Retrieved 2 January 2023.
  285. Yan, Haojing; et al. (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters. 942 (L9): 20. arXiv: 2207.11558 . Bibcode:2023ApJ...942L...9Y. doi: 10.3847/2041-8213/aca80c .
  286. Nightingale, James W.; et al. (May 2023). "Abell 1201: detection of an ultramassive black hole in a strong gravitational lens". Monthly Notices of the Royal Astronomical Society. 521 (3): 3298–332. arXiv: 2303.15514 . doi: 10.1093/mnras/stad587 .
  287. "NASA Study Helps Explain Limit-Breaking Ultra-Luminous X-Ray Sources". NuSTAR. Retrieved 2023-04-24.
  288. Bachetti, Matteo; et al. (October 2022). "Orbital decay in M82 X-2". The Astrophysical Journal. 937 (2): 125. arXiv: 2112.00339 . Bibcode:2022ApJ...937..125B. doi: 10.3847/1538-4357/ac8d67 . S2CID   251903552.
  289. Zhang, S.-B.; Ba, Z.-L.; Ning, D.-H.; Zhai, N.-F.; Lu, Z.-T.; Sheng, D. (2023). "Search for Spin-Dependent Gravitational Interactions at Earth Range". Physical Review Letters. 130 (20): 201401. arXiv: 2303.10352 . Bibcode:2023PhRvL.130t1401Z. doi:10.1103/PhysRevLett.130.201401. PMID   37267553. S2CID   257631794.
  290. Kimball, Derek F. Jackson (May 15, 2023). "Testing Gravity's Effect on Quantum Spins". Physics. Vol. 16, no. 80. American Physical Society (APS). Retrieved May 17, 2023.
  291. Agazie, Gabriella; et al. (June 29, 2023). "The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background". The Astrophysical Journal Letters. 951 (L8): L8. arXiv: 2306.16213 . Bibcode:2023ApJ...951L...8A. doi: 10.3847/2041-8213/acdac6 . S2CID   259274684.
  292. Antoniadis, J.; et al. (June 28, 2023). "The second data release from the European Pulsar Timing Array". Astronomy & Astrophysics. 678: A50. arXiv: 2306.16214 . doi:10.1051/0004-6361/202346844. S2CID   259274756.
  293. Reardon, Daniel J.; et al. (June 29, 2023). "Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array". The Astrophysical Journal Letters. 951 (1): L6. arXiv: 2306.16215 . Bibcode:2023ApJ...951L...6R. doi: 10.3847/2041-8213/acdd02 . S2CID   259275121.
  294. Xu, Heng; et al. (2023). "Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I". Research in Astronomy and Astrophysics. 23 (7): 075024. arXiv: 2306.16216 . Bibcode:2023RAA....23g5024X. doi:10.1088/1674-4527/acdfa5. S2CID   259274998.
  295. Castelvecchi, Davide (June 29, 2023). "Monster gravitational waves spotted for first time". Nature. Retrieved June 29, 2023.
  296. Lewis, Geraint F.; Brewer, Brendon J. (2023). "Detection of the cosmological time dilation of high-redshift quasars". Nature Astronomy. 7 (10): 1265–1269. arXiv: 2306.04053 . Bibcode:2023NatAs...7.1265L. doi:10.1038/s41550-023-02029-2. S2CID   259096065.
  297. University of Sydney (July 3, 2023). "Quasar 'clocks' show Universe was five times slower soon after the Big Bang". Science Daily. Retrieved July 12, 2023.