Horizon problem

Last updated
When we look at the CMB it comes from 46 billion comoving light-years away. However, when the light was emitted the universe was much younger (300,000 years old). In that time light would have only reached as far as the smaller circles. The two points indicated on the diagram would not have been able to contact each other because their spheres of causality do not overlap. Horizon problem.svg
When we look at the CMB it comes from 46 billion comoving light-years away. However, when the light was emitted the universe was much younger (300,000 years old). In that time light would have only reached as far as the smaller circles. The two points indicated on the diagram would not have been able to contact each other because their spheres of causality do not overlap.

The horizon problem (also known as the homogeneity problem) is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regions of space in the absence of a mechanism that sets the same initial conditions everywhere. It was first pointed out by Wolfgang Rindler in 1956. [1]

Contents

The most commonly accepted solution is cosmic inflation. Different solutions propose a cyclic universe or a variable speed of light.

Background

Astronomical distances and particle horizons

The distances of observable objects in the night sky correspond to times in the past. We use the light-year (the distance light can travel in the time of one Earth year) to describe these cosmological distances. A galaxy measured at ten billion light-years appears to us as it was ten billion years ago, because the light has taken that long to travel to the observer. If one were to look at a galaxy ten billion light-years away in one direction and another in the opposite direction, the total distance between them is twenty billion light-years. This means that the light from the first has not yet reached the second because the universe is only about 13.8 billion years old. In a more general sense, there are portions of the universe that are visible to us, but invisible to each other, outside each other's respective particle horizons.

Causal information propagation

In accepted relativistic physical theories, no information can travel faster than the speed of light. In this context, "information" means "any sort of physical interaction". For instance, heat will naturally flow from a hotter area to a cooler one, and in physics terms, this is one example of information exchange. Given the example above, the two galaxies in question cannot have shared any sort of information; they are not in causal contact. In the absence of common initial conditions, one would expect, then, that their physical properties would be different, and more generally, that the universe as a whole would have varying properties in causally disconnected regions.

Horizon problem

Contrary to this expectation, the observations of the cosmic microwave background (CMB) and galaxy surveys show that the observable universe is nearly isotropic, which, through the Copernican principle, also implies homogeneity. [2] CMB sky surveys show that the temperatures of the CMB are coordinated to a level of where is the difference between the observed temperature in a region of the sky and the average temperature of the sky . This coordination implies that the entire sky, and thus the entire observable universe, must have been causally connected long enough for the universe to come into thermal equilibrium.

According to the Big Bang model, as the density of the expanding universe dropped, it eventually reached a temperature where photons fell out of thermal equilibrium with matter; they decoupled from the electron-proton plasma and began free-streaming across the universe. This moment in time is referred to as the epoch of Recombination, when electrons and protons became bound to form electrically neutral hydrogen; without free electrons to scatter the photons, the photons began free-streaming. This epoch is observed through the CMB. Since we observe the CMB as a background to objects at a smaller redshift, we describe this epoch as the transition of the universe from opaque to transparent. The CMB physically describes the ‘surface of last scattering’ as it appears to us as a surface, or a background, as shown in the figure below.

Note we use conformal time in the following diagrams. Conformal time describes the amount of time it would take a photon to travel from the location of the observer to the farthest observable distance (if the universe stopped expanding right now).

The blue circle is the CMB surface which we observe at the time of last scattering. The yellow lines describe how photons were scattered before the epoch of recombination and were free-streaming after. The observer sits at the center at present time. For reference. Surface of Last Scattering.png
The blue circle is the CMB surface which we observe at the time of last scattering. The yellow lines describe how photons were scattered before the epoch of recombination and were free-streaming after. The observer sits at the center at present time. For reference.

The decoupling, or the last scattering, is thought to have occurred about 300,000 years after the Big Bang, or at a redshift of about . We can determine both the approximate angular diameter of the universe and the physical size of the particle horizon that had existed at this time.

The angular diameter distance, in terms of redshift , is described by . If we assume a flat cosmology then,

The epoch of recombination occurred during a matter dominated era of the universe, so we can approximate as . Putting these together, we see that the angular diameter distance, or the size of the observable universe for a redshift is

Since , we can approximate the above equation as

Substituting this into our definition of angular diameter distance, we obtain

From this formula, we obtain the angular diameter distance of the cosmic microwave background as .

The particle horizon describes the maximum distance light particles could have traveled to the observer given the age of the universe. We can determine the comoving distance for the age of the universe at the time of recombination using from earlier,

This spacetime diagram shows how the light cones for two light particles spaced some distance apart at the time of last scattering (ls) do not intersect (i.e. they are causally disconnected). The horizontal axis is comoving distance, the vertical axis is conformal time, and the units have the speed of light as 1. For reference. Spacetime Diagram without Inflation.png
This spacetime diagram shows how the light cones for two light particles spaced some distance apart at the time of last scattering (ls) do not intersect (i.e. they are causally disconnected). The horizontal axis is comoving distance, the vertical axis is conformal time, and the units have the speed of light as 1. For reference.

To get the physical size of the particle horizon ,

We would expect any region of the CMB within 2 degrees of angular separation to have been in causal contact, but at any scale larger than 2° there should have been no exchange of information.

CMB regions that are separated by more than 2° lie outside one another's particle horizons and are causally disconnected. The horizon problem describes the fact that we see isotropy in the CMB temperature across the entire sky, despite the entire sky not being in causal contact to establish thermal equilibrium. Refer to the timespace diagram to the right for a visualization of this problem.

If the universe started with even slightly different temperatures in different places, the CMB should not be isotropic unless there is a mechanism that evens out the temperature by the time of decoupling. In reality, the CMB has the same temperature in the entire sky, 2.726 ± 0.001 K. [3]

Inflationary model

This spacetime diagram shows how inflation changes the light cones for two light particles spaced some distance apart at the time of last scattering (ls) to allow them to intersect. In this scenario, they are in causal contact and can exchange information with one another. The horizontal axis is comoving distance, the vertical axis is conformal time, and the units have the speed of light as 1. For reference. Spacetime Diagram with Inflation.png
This spacetime diagram shows how inflation changes the light cones for two light particles spaced some distance apart at the time of last scattering (ls) to allow them to intersect. In this scenario, they are in causal contact and can exchange information with one another. The horizontal axis is comoving distance, the vertical axis is conformal time, and the units have the speed of light as 1. For reference.

The theory of cosmic inflation has attempted to address the problem by positing a 10−32-second period of exponential expansion in the first second of the history of the universe due to a scalar field interaction. [4] According to the inflationary model, the universe increased in size by a factor of more than 1022, from a small and causally connected region in near equilibrium. [5] Inflation then expanded the universe rapidly, isolating nearby regions of spacetime by growing them beyond the limits of causal contact, effectively "locking in" the uniformity at large distances. Essentially, the inflationary model suggests that the universe was entirely in causal contact in the very early universe. Inflation then expands this universe by approximately 60 e-foldings (the scale factor increases by factor ). We observe the CMB after inflation has occurred at a very large scale. It maintained thermal equilibrium to this large size because of the rapid expansion from inflation.

One consequence of cosmic inflation is that the anisotropies in the Big Bang due to quantum fluctuations are reduced but not eliminated. Differences in the temperature of the cosmic background are smoothed by cosmic inflation, but they still exist. The theory predicts a spectrum for the anisotropies in the microwave background which is mostly consistent with observations from WMAP and COBE. [6]

However, gravity alone may be sufficient to explain this homogeneity. [7]

Variable-speed-of-light theories

Cosmological models employing a variable speed of light have been proposed to resolve the horizon problem of and provide an alternative to cosmic inflation. In the VSL models, the fundamental constant c, denoting the speed of light in vacuum, is greater in the early universe than its present value, effectively increasing the particle horizon at the time of decoupling sufficiently to account for the observed isotropy of the CMB.

See also

Related Research Articles

<span class="mw-page-title-main">Accelerating expansion of the universe</span> Cosmological phenomenon

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther away that an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

<span class="mw-page-title-main">Hubble's law</span> Observation in physical cosmology

Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible light spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.

The particle horizon is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, so its distance at the present epoch defines the size of the observable universe. Due to the expansion of the universe, it is not simply the age of the universe times the speed of light, but rather the speed of light times the conformal time. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.

<span class="mw-page-title-main">Friedmann–Lemaître–Robertson–Walker metric</span> Metric based on the exact solution of Einsteins field equations of general relativity

The Friedmann–Lemaître–Robertson–Walker metric is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.

The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson–Walker scale factor, this is a key parameter of the Friedmann equations.

<span class="mw-page-title-main">Lambda-CDM model</span> Model of Big Bang cosmology

The Lambda-CDM, Lambda cold dark matter, or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant, denoted by lambda (Λ), associated with dark energy
  2. the postulated cold dark matter, denoted by CDM
  3. ordinary matter
<span class="mw-page-title-main">Flatness problem</span> Cosmological fine-tuning problem

The flatness problem is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special' values, and that small deviations from these values would have extreme effects on the appearance of the universe at the current time.

<span class="mw-page-title-main">Friedmann equations</span> Equations in physical cosmology

The Friedmann equations, also known as the Friedmann–Lemaître (FL) equations, are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.

<span class="mw-page-title-main">Cosmic neutrino background</span> Universes background particle radiation composed of neutrinos

The cosmic neutrino background is the universe's background particle radiation composed of neutrinos. They are sometimes known as relic neutrinos.

A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons.

In astronomy, angular diameter distance is a distance defined in terms of an object's physical size, , and its angular size, , as viewed from Earth:

<span class="mw-page-title-main">Deceleration parameter</span>

The deceleration parameter in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: where is the scale factor of the universe and the dots indicate derivatives by proper time. The expansion of the universe is said to be "accelerating" if , and in this case the deceleration parameter will be negative. The minus sign and name "deceleration parameter" are historical; at the time of definition was expected to be negative, so a minus sign was inserted in the definition to make positive in that case. Since the evidence for the accelerating universe in the 1998–2003 era, it is now believed that is positive therefore the present-day value is negative. In general varies with cosmic time, except in a few special cosmological models; the present-day value is denoted .

<span class="mw-page-title-main">Distance measure</span> Definitions for distance between two objects or events in the universe

Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity to another quantity that is not directly observable, but is more convenient for calculations. The distance measures discussed here all reduce to the common notion of Euclidean distance at low redshift.

Cosmic time, or cosmological time, is the time coordinate commonly used in the Big Bang models of physical cosmology. This concept of time avoids some issues related to relativity by being defined within a solution to the equations of general relativity widely used in cosmology.

<span class="mw-page-title-main">Matter power spectrum</span>

The matter power spectrum describes the density contrast of the universe as a function of scale. It is the Fourier transform of the matter correlation function. On large scales, gravity competes with cosmic expansion, and structures grow according to linear theory. In this regime, the density contrast field is Gaussian, Fourier modes evolve independently, and the power spectrum is sufficient to completely describe the density field. On small scales, gravitational collapse is non-linear, and can only be computed accurately using N-body simulations. Higher-order statistics are necessary to describe the full field at small scales.

<span class="mw-page-title-main">Diffusion damping</span> Physical process in cosmology

In modern cosmological theory, diffusion damping, also called photon diffusion damping, is a physical process which reduced density inequalities (anisotropies) in the early universe, making the universe itself and the cosmic microwave background radiation (CMB) more uniform. Around 300,000 years after the Big Bang, during the epoch of recombination, diffusing photons travelled from hot regions of space to cold ones, equalising the temperatures of these regions. This effect is responsible, along with baryon acoustic oscillations, the Doppler effect, and the effects of gravity on electromagnetic radiation, for the eventual formation of galaxies and galaxy clusters, these being the dominant large scale structures which are observed in the universe. It is a damping by diffusion, not of diffusion.

<span class="mw-page-title-main">Chronology of the universe</span> History and future of the universe

The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.

<span class="mw-page-title-main">Baryon acoustic oscillations</span> Fluctuations in the density of the normal matter of the universe

In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms, which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy by constraining cosmological parameters.

<span class="mw-page-title-main">Recombination (cosmology)</span> Epoch c. 370,000 years after the Big Bang

In cosmology, recombination refers to the epoch during which charged electrons and protons first became bound to form electrically neutral hydrogen atoms. Recombination occurred about 378000 years after the Big Bang. The word "recombination" is misleading, since the Big Bang theory does not posit that protons and electrons had been combined before, but the name exists for historical reasons since it was named before the Big Bang hypothesis became the primary theory of the birth of the universe.

<span class="mw-page-title-main">Decoupling (cosmology)</span> Type of event in the early universe

In cosmology, decoupling is a period in the development of the universe when different types of particles fall out of thermal equilibrium with each other. This occurs as a result of the expansion of the universe, as their interaction rates decrease up to this critical point. The two verified instances of decoupling since the Big Bang which are most often discussed are photon decoupling and neutrino decoupling, as these led to the cosmic microwave background and cosmic neutrino background, respectively.

References

  1. Carrigan, Richard A.; Trower, W. Peter (1983). Magnetic Monopoles. doi:10.1007/978-1-4615-7370-8. ISBN   978-1-4615-7372-2.
  2. "Cosmological Physics".
  3. Fixsen, D. J. (2009). "The Temperature of the Cosmic Microwave Background". The Astrophysical Journal . 707 (2): 916–920. arXiv: 0911.1955 . Bibcode:2009ApJ...707..916F. doi:10.1088/0004-637X/707/2/916. S2CID   119217397.
  4. An Exposition on Inflationary Cosmology, Gary Scott Watson, Dept. of Physics, Brown University
  5. Remmen, Grant N.; Carroll, Sean M. (2014). "How many e-folds should we expect from high-scale inflation?". Physical Review D. 90 (6): 063517. arXiv: 1405.5538 . Bibcode:2014PhRvD..90f3517R. doi:10.1103/PhysRevD.90.063517. ISSN   1550-7998. S2CID   37669055.
  6. Starkman, Glenn D. and Dominic J. Schwarz; Scientific American (subscription required)
  7. Fajman, David (22 September 2020). "Gravity causes homogeneity of the universe".