Particle horizon

Last updated

The particle horizon (also called the cosmological horizon, the comoving horizon (in Scott Dodelson's text), or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. Much like the concept of a terrestrial horizon, it represents the boundary between the observable and the unobservable regions of the universe, [1] so its distance at the present epoch defines the size of the observable universe. [2] Due to the expansion of the universe, it is not simply the age of the universe times the speed of light (approximately 13.8 billion light-years), but rather the speed of light times the conformal time. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.

Contents

Conformal time and the particle horizon

In terms of comoving distance, the particle horizon is equal to the conformal time that has passed since the Big Bang, times the speed of light . In general, the conformal time at a certain time is given by

where is the scale factor of the Friedmann–Lemaître–Robertson–Walker metric, and we have taken the Big Bang to be at . By convention, a subscript 0 indicates "today" so that the conformal time today . Note that the conformal time is not the age of the universe, which is estimated around . Rather, the conformal time is the amount of time it would take a photon to travel from where we are located to the furthest observable distance, provided the universe ceased expanding. As such, is not a physically meaningful time (this much time has not yet actually passed); though, as we will see, the particle horizon with which it is associated is a conceptually meaningful distance.

The particle horizon recedes constantly as time passes and the conformal time grows. As such, the observed size of the universe always increases. [1] [3] Since proper distance at a given time is just comoving distance times the scale factor [4] (with comoving distance normally defined to be equal to proper distance at the present time, so at present), the proper distance to the particle horizon at time is given by [5]

and for today

Evolution of the particle horizon

In this section we consider the FLRW cosmological model. In that context, the universe can be approximated as composed by non-interacting constituents, each one being a perfect fluid with density , partial pressure and state equation , such that they add up to the total density and total pressure . [6] Let us now define the following functions:

Any function with a zero subscript denote the function evaluated at the present time (or equivalently ). The last term can be taken to be including the curvature state equation. [7] It can be proved that the Hubble function is given by

where the dilution exponent . Notice that the addition ranges over all possible partial constituents and in particular there can be countably infinitely many. With this notation we have: [7]

where is the largest (possibly infinite). The evolution of the particle horizon for an expanding universe () is: [7]

where is the speed of light and can be taken to be (natural units). Notice that the derivative is made with respect to the FLRW-time , while the functions are evaluated at the redshift which are related as stated before. We have an analogous but slightly different result for event horizon.

Horizon problem

The concept of a particle horizon can be used to illustrate the famous horizon problem, which is an unresolved issue associated with the Big Bang model. Extrapolating back to the time of recombination when the cosmic microwave background (CMB) was emitted, we obtain a particle horizon of about

which corresponds to a proper size at that time of:

Since we observe the CMB to be emitted essentially from our particle horizon (), our expectation is that parts of the cosmic microwave background (CMB) that are separated by about a fraction of a great circle across the sky of

(an angular size of ) [8] should be out of causal contact with each other. That the entire CMB is in thermal equilibrium and approximates a blackbody so well is therefore not explained by the standard explanations about the way the expansion of the universe proceeds. The most popular resolution to this problem is cosmic inflation.

See also

Related Research Articles

<span class="mw-page-title-main">Hubble's law</span> Observation in physical cosmology

Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible light spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.

<span class="mw-page-title-main">Gravity wave</span> Wave in or at the interface between fluids where gravity is the main equilibrium force

In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.

The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid. The governing equation is:

In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.

<span class="mw-page-title-main">Friedmann–Lemaître–Robertson–Walker metric</span> Metric based on the exact solution of Einsteins field equations of general relativity

The Friedmann–Lemaître–Robertson–Walker metric is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.

<span class="mw-page-title-main">Horizon problem</span> Cosmological fine-tuning problem

The horizon problem is a cosmological fine-tuning problem within the Big Bang model of the universe. It arises due to the difficulty in explaining the observed homogeneity of causally disconnected regions of space in the absence of a mechanism that sets the same initial conditions everywhere. It was first pointed out by Wolfgang Rindler in 1956.

<span class="mw-page-title-main">Flatness problem</span> Cosmological fine-tuning problem

The flatness problem is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special' values, and that small deviations from these values would have extreme effects on the appearance of the universe at the current time.

<span class="mw-page-title-main">Friedmann equations</span> Equations in physical cosmology

The Friedmann equations, also known as the Friedmann–Lemaître (FL) equations, are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.

In the mathematical description of general relativity, the Boyer–Lindquist coordinates are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole.

A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons.

<span class="mw-page-title-main">Expansion of the universe</span> Increase in distance between parts of the universe over time

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

<span class="mw-page-title-main">Deceleration parameter</span>

The deceleration parameter in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: where is the scale factor of the universe and the dots indicate derivatives by proper time. The expansion of the universe is said to be "accelerating" if , and in this case the deceleration parameter will be negative. The minus sign and name "deceleration parameter" are historical; at the time of definition was expected to be negative, so a minus sign was inserted in the definition to make positive in that case. Since the evidence for the accelerating universe in the 1998–2003 era, it is now believed that is positive therefore the present-day value is negative. In general varies with cosmic time, except in a few special cosmological models; the present-day value is denoted .

<span class="mw-page-title-main">Distance measure</span> Definitions for distance between two objects or events in the universe

Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity to another quantity that is not directly observable, but is more convenient for calculations. The distance measures discussed here all reduce to the common notion of Euclidean distance at low redshift.

<span class="mw-page-title-main">Lemaître–Tolman metric</span>

In physics, the Lemaître–Tolman metric, also known as the Lemaître–Tolman–Bondi metric or the Tolman metric, is a Lorentzian metric based on an exact solution of Einstein's field equations; it describes an isotropic and expanding universe which is not homogeneous, and is thus used in cosmology as an alternative to the standard Friedmann–Lemaître–Robertson–Walker metric to model the expansion of the universe. It has also been used to model a universe which has a fractal distribution of matter to explain the accelerating expansion of the universe. It was first found by Georges Lemaître in 1933 and Richard Tolman in 1934 and later investigated by Hermann Bondi in 1947.

Cosmic time, or cosmological time, is the time coordinate commonly used in the Big Bang models of physical cosmology. This concept of time avoids some issues related to relativity by being defined within a solution to the equations of general relativity widely used in cosmology.

<span class="mw-page-title-main">Matter power spectrum</span>

The matter power spectrum describes the density contrast of the universe as a function of scale. It is the Fourier transform of the matter correlation function. On large scales, gravity competes with cosmic expansion, and structures grow according to linear theory. In this regime, the density contrast field is Gaussian, Fourier modes evolve independently, and the power spectrum is sufficient to completely describe the density field. On small scales, gravitational collapse is non-linear, and can only be computed accurately using N-body simulations. Higher-order statistics are necessary to describe the full field at small scales.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Baryon acoustic oscillations</span> Fluctuations in the density of the normal matter of the universe

In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms, which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy by constraining cosmological parameters.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are:

References

  1. 1 2 Harrison, Edward R. (2000). Cosmology: the science of the universe (2nd ed.). Cambridge: Cambridge University Press. pp. 447–. ISBN   978-0-521-66148-5.
  2. Liddle, Andrew R.; Lyth, David H. (2000). Cosmological inflation and large-scale structure. Cambridge: Cambridge University Press. pp. 24–. ISBN   978-0-521-57598-0.
  3. Hobson, M. P.; Efstathiou, George; Lasenby, A. N. (2006). General relativity: an introduction for physicists. Cambridge, UK ; New York: Cambridge University Press. pp. 419–. ISBN   978-0-521-82951-9. OCLC   61757089.
  4. Davis, Tamara M.; Lineweaver, Charles H. (2004). "Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe". Publications of the Astronomical Society of Australia. 21 (1): 97–109. arXiv: astro-ph/0310808 . Bibcode:2004PASA...21...97D. doi:10.1071/AS03040. ISSN   1323-3580. S2CID   13068122.
  5. Giovannini, Massimo (2008). A primer on the physics of the cosmic microwave background . Singapore ; Hackensack, NJ: World Scientific. pp.  70–. ISBN   978-981-279-142-9. OCLC   191658608.
  6. Margalef-Bentabol, Berta; Margalef-Bentabol, Juan; Cepa, Jordi (2012-12-21). "Evolution of the cosmological horizons in a concordance universe". Journal of Cosmology and Astroparticle Physics. 2012 (12): 035. arXiv: 1302.1609 . Bibcode:2012JCAP...12..035M. doi:10.1088/1475-7516/2012/12/035. ISSN   1475-7516. S2CID   119704554.
  7. 1 2 3 Margalef-Bentabol, Berta; Margalef-Bentabol, Juan; Cepa, Jordi (February 2013). "Evolution of the cosmological horizons in a universe with countably infinitely many state equations". Journal of Cosmology and Astroparticle Physics. 015. 2013 (2): 015. arXiv: 1302.2186 . Bibcode:2013JCAP...02..015M. doi:10.1088/1475-7516/2013/02/015. ISSN   1475-7516. S2CID   119614479.
  8. Tojero, Rita (March 16, 2006). "Understanding the Cosmic Microwave Background Temperature Power Spectrum" (PDF). Royal Observatory, Edinburgh . Retrieved 5 November 2015.