Scale factor (cosmology)

Last updated

The expansion of the universe is parametrized by a dimensionless scale factor. Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, [1] this is a key parameter of the Friedmann equations.

Contents

In the early stages of the Big Bang, most of the energy was in the form of radiation, and that radiation was the dominant influence on the expansion of the universe. Later, with cooling from the expansion the roles of matter and radiation changed and the universe entered a matter-dominated era. Recent results suggest that we have already entered an era dominated by dark energy, but examination of the roles of matter and radiation are most important for understanding the early universe.

Using the dimensionless scale factor to characterize the expansion of the universe, the effective energy densities of radiation and matter scale differently. This leads to a radiation-dominated era in the very early universe but a transition to a matter-dominated era at a later time and, since about 4 billion years ago, a subsequent dark-energy-dominated era. [2] [notes 1]

Detail

Some insight into the expansion can be obtained from a Newtonian expansion model which leads to a simplified version of the Friedmann equation. It relates the proper distance (which can change over time, unlike the comoving distance which is constant and set to today's distance) between a pair of objects, e.g. two galaxy clusters, moving with the Hubble flow in an expanding or contracting FLRW universe at any arbitrary time to their distance at some reference time . The formula for this is:

where is the proper distance at epoch , is the distance at the reference time , usually also referred to as comoving distance, and is the scale factor. [3] Thus, by definition, and .

The scale factor is dimensionless, with counted from the birth of the universe and set to the present age of the universe: [4] giving the current value of as or .

The evolution of the scale factor is a dynamical question, determined by the equations of general relativity, which are presented in the case of a locally isotropic, locally homogeneous universe by the Friedmann equations.

The Hubble parameter is defined as:

where the dot represents a time derivative. The Hubble parameter varies with time, not with space, with the Hubble constant being its current value.

From the previous equation one can see that , and also that , so combining these gives , and substituting the above definition of the Hubble parameter gives which is just Hubble's law.

Current evidence suggests that the expansion of the universe is accelerating, which means that the second derivative of the scale factor is positive, or equivalently that the first derivative is increasing over time. [5] This also implies that any given galaxy recedes from us with increasing speed over time, i.e. for that galaxy is increasing with time. In contrast, the Hubble parameter seems to be decreasing with time, meaning that if we were to look at some fixed distance d and watch a series of different galaxies pass that distance, later galaxies would pass that distance at a smaller velocity than earlier ones. [6]

According to the Friedmann–Lemaître–Robertson–Walker metric which is used to model the expanding universe, if at present time we receive light from a distant object with a redshift of z, then the scale factor at the time the object originally emitted that light is . [7] [8]

Chronology

Radiation-dominated era

After Inflation, and until about 47,000 years after the Big Bang, the dynamics of the early universe were set by radiation (referring generally to the constituents of the universe which moved relativistically, principally photons and neutrinos). [9]

For a radiation-dominated universe the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is obtained solving the Friedmann equations:

[10]

Matter-dominated era

Between about 47,000 years and 9.8 billion years after the Big Bang, [11] the energy density of matter exceeded both the energy density of radiation and the vacuum energy density. [12]

When the early universe was about 47,000 years old (redshift 3600), mass–energy density surpassed the radiation energy, although the universe remained optically thick to radiation until the universe was about 378,000 years old (redshift 1100). This second moment in time (close to the time of recombination), at which the photons which compose the cosmic microwave background radiation were last scattered, is often mistaken[ neutrality is disputed ] as marking the end of the radiation era.

For a matter-dominated universe the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is easily obtained solving the Friedmann equations:

Dark-energy-dominated era

In physical cosmology, the dark-energy-dominated era is proposed as the last of the three phases of the known universe, the other two being the radiation-dominated era and the matter-dominated era. The dark-energy-dominated era began after the matter-dominated era, i.e. when the Universe was about 9.8 billion years old. [13] In the era of cosmic inflation, the Hubble parameter is also thought to be constant, so the expansion law of the dark-energy-dominated era also holds for the inflationary prequel of the big bang.

The cosmological constant is given the symbol Λ, and, considered as a source term in the Einstein field equation, can be viewed as equivalent to a "mass" of empty space, or dark energy. Since this increases with the volume of the universe, the expansion pressure is effectively constant, independent of the scale of the universe, while the other terms decrease with time. Thus, as the density of other forms of matter – dust and radiation – drops to very low concentrations, the cosmological constant (or "dark energy") term will eventually dominate the energy density of the Universe. Recent measurements of the change in Hubble constant with time, based on observations of distant supernovae, show this acceleration in expansion rate, [14] indicating the presence of such dark energy.

For a dark-energy-dominated universe, the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is easily obtained solving the Friedmann equations:

Here, the coefficient in the exponential, the Hubble constant, is

This exponential dependence on time makes the spacetime geometry identical to the de Sitter universe, and only holds for a positive sign of the cosmological constant, which is the case according to the currently accepted value of the cosmological constant, Λ, that is approximately 2 · 10−35 s−2. The current density of the observable universe is of the order of 9.44 · 10−27 kg m−3 and the age of the universe is of the order of 13.8 billion years, or 4.358 · 1017 s. The Hubble constant, , is ≈70.88 km s−1 Mpc−1 (The Hubble time is 13.79 billion years).

See also

Notes

  1. [2] p. 6: "The Universe has gone through three distinct eras: radiation-dominated, z ≳ 3000; matter-dominated, 3000 ≳ z ≳ 0.5; and dark-energy dominated, z ≲ 0.5. The evolution of the scale factor is controlled by the dominant energy form: a(t) ∝ t2/3(1+w) (for constant w). During the radiation-dominated era, a(t) ∝ t1/2; during the matter-dominated era, a(t) ∝ t2/3; and for the dark-energy-dominated era, assuming w = −1, asymptotically a(t) ∝ exp(Ht)."
    p. 44: "Taken together, all the current data provide strong evidence for the existence of dark energy; they constrain the fraction of critical density contributed by dark energy, 0.76 ± 0.02, and the equation-of-state parameter, w ≈ −1 ± 0.1 (stat) ±0.1 (sys), assuming that w is constant. This implies that the Universe began accelerating at redshift z ∼ 0.4 and age t ∼ 10 Gyr. These results are robust – data from any one method can be removed without compromising the constraints – and they are not substantially weakened by dropping the assumption of spatial flatness."

Related Research Articles

<span class="mw-page-title-main">Accelerating expansion of the universe</span> Cosmological phenomenon

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness, and since objects that are farther away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the farther away that an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

<span class="mw-page-title-main">Hubble's law</span> Observation in physical cosmology

Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible spectrum.

In standard cosmology, comoving distance and proper distance are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe, giving a distance that does not change in time due to the expansion of space. Proper distance roughly corresponds to where a distant object would be at a specific moment of cosmological time, which can change over time due to the expansion of the universe. Comoving distance and proper distance are defined to be equal at the present time. At other times, the Universe's expansion results in the proper distance changing, while the comoving distance remains constant.

A de Sitter universe is a cosmological solution to the Einstein field equations of general relativity, named after Willem de Sitter. It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are dominated by the cosmological constant, thought to correspond to dark energy in our universe or the inflaton field in the early universe. According to the models of inflation and current observations of the accelerating universe, the concordance models of physical cosmology are converging on a consistent model where our universe was best described as a de Sitter universe at about a time seconds after the fiducial Big Bang singularity, and far into the future.

The Friedmann–Lemaître–Robertson–Walker metric is a metric based on the exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.

In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of 13.787±0.020 billion years as interpreted with the Lambda-CDM concordance model as of 2021; and a measurement based on the observations of the local, modern universe, which suggest a younger age. The uncertainty of the first kind of measurement has been narrowed down to 20 million years, based on a number of studies that all show similar figures for the age. These studies include researches of the microwave background radiation by the Planck spacecraft, the Wilkinson Microwave Anisotropy Probe and other space probes. Measurements of the cosmic background radiation give the cooling time of the universe since the Big Bang, and measurements of the expansion rate of the universe can be used to calculate its approximate age by extrapolating backwards in time. The range of the estimate is also within the range of the estimate for the oldest observed star in the universe.

The Lambda-CDM, Lambda cold dark matter or ΛCDM model is a mathematical model of the Big Bang theory with three major components:

  1. a cosmological constant denoted by lambda (Λ) associated with dark energy,
  2. the postulated cold dark matter, and
  3. ordinary matter.
<span class="mw-page-title-main">Flatness problem</span> Cosmological fine-tuning problem

The flatness problem is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special' values, and that small deviations from these values would have extreme effects on the appearance of the universe at the current time.

<span class="mw-page-title-main">Friedmann equations</span> Equations in physical cosmology

The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.

In cosmology, the equation of state of a perfect fluid is characterized by a dimensionless number , equal to the ratio of its pressure to its energy density :

In physical cosmology, structure formation is the formation of galaxies, galaxy clusters and larger structures from small early density fluctuations. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies. Structure formation attempts to model how these structures were formed by gravitational instability of small early ripples in spacetime density or another emergence.

In cosmology, a static universe is a cosmological model in which the universe is both spatially and temporally infinite, and space is neither expanding nor contracting. Such a universe does not have so-called spatial curvature; that is to say that it is 'flat' or Euclidean. A static infinite universe was first proposed by English astronomer Thomas Digges (1546–1595).

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation only applies with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

The deceleration parameter in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by:

Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe. They are often used to tie some observable quantity to another quantity that is not directly observable, but is more convenient for calculations. The distance measures discussed here all reduce to the common notion of Euclidean distance at low redshift.

In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. Assuming that the lambda-CDM model of cosmology is correct, dark energy is the dominant component of the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 26% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 6×10−10 J/m3, much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms, which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy by constraining cosmological parameters.

The Einstein–de Sitter universe is a model of the universe proposed by Albert Einstein and Willem de Sitter in 1932. On first learning of Edwin Hubble's discovery of a linear relation between the redshift of the galaxies and their distance, Einstein set the cosmological constant to zero in the Friedmann equations, resulting in a model of the expanding universe known as the Friedmann–Einstein universe. In 1932, Einstein and De Sitter proposed an even simpler cosmic model by assuming a vanishing spatial curvature as well as a vanishing cosmological constant. In modern parlance, the Einstein–de Sitter universe can be described as a cosmological model for a flat matter-only Friedmann–Lemaître–Robertson–Walker metric (FLRW) universe.

Mattig's formula was an important formula in observational cosmology and extragalactic astronomy which gives relation between radial coordinate and redshift of a given source. It depends on the cosmological model being used and is used to calculate luminosity distance in terms of redshift.

The cosmic age problem was a historical problem in astronomy concerning the age of the universe. The problem was that at various times in the 20th century, the universe was estimated to be younger than the oldest observed stars. Estimates of the universe's age came from measurements of the current expansion rate of the universe, the Hubble constant , as well as cosmological models relating to the universe's matter and energy contents. Issues with measuring as well as not knowing about the existence of dark energy led to spurious estimates of the age. Additionally, objects such as galaxies, stars, and planets could not have existed in the extreme temperatures and densities shortly after the Big Bang.

References

  1. Steven Weinberg (2008). Cosmology. Oxford University Press. p. 3. ISBN   978-0-19-852682-7.
  2. 1 2 Frieman, Joshua A.; Turner, Michael S.; Huterer, Dragan (2008-01-01). "Dark Energy and the Accelerating Universe". Annual Review of Astronomy and Astrophysics. 46 (1): 385–432. arXiv: 0803.0982 . Bibcode:2008ARA&A..46..385F. doi:10.1146/annurev.astro.46.060407.145243. S2CID   15117520.
  3. Schutz, Bernard (2003). Gravity from the Ground Up: An Introductory Guide to Gravity and General Relativity. Cambridge University Press. p.  363. ISBN   978-0-521-45506-0.
  4. Planck Collaboration (2016). "Planck 2015 results. XIII. Cosmological parameters (See Table 4 on page 31 of pdf)". Astronomy & Astrophysics. 594: A13. arXiv: 1502.01589 . Bibcode:2016A&A...594A..13P. doi:10.1051/0004-6361/201525830. S2CID   119262962.
  5. Jones, Mark H.; Robert J. Lambourne (2004). An Introduction to Galaxies and Cosmology. Cambridge University Press. p.  244. ISBN   978-0-521-83738-5.
  6. Is the universe expanding faster than the speed of light? (see final paragraph) Archived November 28, 2010, at the Wayback Machine
  7. Davies, Paul (1992), The New Physics, p. 187.
  8. Mukhanov, V. F. (2005), Physical Foundations of Cosmology, p. 58.
  9. Ryden, Barbara, "Introduction to Cosmology", 2006, eqn. 5.25, 6.41
  10. Padmanabhan (1993), p. 64.
  11. Ryden, Barbara, "Introduction to Cosmology", 2006, eqn. 6.33, 6.41
  12. Zelik, M and Gregory, S: "Introductory Astronomy & Astrophysics", page 497. Thompson Learning, Inc. 1998
  13. Ryden, Barbara, "Introduction to Cosmology", 2006, eqn. 6.33
  14. The Nobel Prize in Physics 2011. Retrieved 18 May 2017.