Fine-tuning (physics)

Last updated

In theoretical physics, fine-tuning is the process in which parameters of a model must be adjusted very precisely in order to fit with certain observations.

Contents

Theories requiring fine-tuning are regarded as problematic in the absence of a known mechanism to explain why the parameters happen to have precisely the observed values that they return. The heuristic rule that parameters in a fundamental physical theory should not be too fine-tuned is called naturalness. [1] [2]

Background

The idea that naturalness will explain fine tuning was brought into question by Nima Arkani-Hamed, a theoretical physicist, in his talk "Why is there a Macroscopic Universe?", a lecture from the mini-series "Multiverse & Fine Tuning" from the "Philosophy of Cosmology" project, a University of Oxford and Cambridge Collaboration 2013. In it he describes how naturalness has usually provided a solution to problems in physics; and that it had usually done so earlier than expected. However, in addressing the problem of the cosmological constant, naturalness has failed to provide an explanation though it would have been expected to have done so a long time ago.

The necessity of fine-tuning leads to various problems that do not show that the theories are incorrect, in the sense of falsifying observations, but nevertheless suggest that a piece of the story is missing. For example, the cosmological constant problem (why is the cosmological constant so small?); the hierarchy problem; and the strong CP problem, among others.

Example

An example of a fine-tuning problem considered by the scientific community to have a plausible "natural" solution is the cosmological flatness problem, which is solved if inflationary theory is correct: inflation forces the universe to become very flat, answering the question of why the universe is today observed to be flat to such a high degree.[ citation needed ]

Measurement

Although fine-tuning was traditionally measured by ad hoc fine-tuning measures, such as the Barbieri-Giudice-Ellis measure, over the past decade many scientists recognized that fine-tuning arguments were a specific application of Bayesian statistics. [3] [4] [5] [6] [7] [8] [ excessive citations ]

See also

Related Research Articles

The anthropic principle, also known as the observation selection effect, is the hypothesis, first proposed in 1957 by Robert Dicke, that the range of possible observations that could be made about the universe is limited by the fact that observations could happen only in a universe capable of developing intelligent life. As Steven Weinberg puts it: "Where else could we be, except on a planet that can sustain life?" Proponents of the anthropic principle argue that it explains why the universe has the age and the fundamental physical constants necessary to accommodate conscious life, since if either had been different, no one would have been around to make observations. Anthropic reasoning is often used to deal with the idea that the universe seems to be finely tuned for the existence of life.

<span class="mw-page-title-main">Inflation (cosmology)</span> Theory of rapid universe expansion

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch is believed to have lasted from 10−36 seconds to between 10−33 and 10−32 seconds after the Big Bang. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old.

In physics, quintessence is a hypothetical form of dark energy, more precisely a scalar field, postulated as an explanation of the observation of an accelerating rate of expansion of the universe. The first example of this scenario was proposed by Ratra and Peebles (1988) and Wetterich (1988). The concept was expanded to more general types of time-varying dark energy, and the term "quintessence" was first introduced in a 1998 paper by Robert R. Caldwell, Rahul Dave and Paul Steinhardt. It has been proposed by some physicists to be a fifth fundamental force. Quintessence differs from the cosmological constant explanation of dark energy in that it is dynamic; that is, it changes over time, unlike the cosmological constant which, by definition, does not change. Quintessence can be either attractive or repulsive depending on the ratio of its kinetic and potential energy. Those working with this postulate believe that quintessence became repulsive about ten billion years ago, about 3.5 billion years after the Big Bang.

Supersymmetry is a theoretical framework in physics that suggests the existence of a symmetry between particles with integer spin (bosons) and particles with half-integer spin (fermions). It proposes that for every known particle, there exists a partner particle with different spin properties. There have been multiple experiments on supersymmetry that have failed to provide evidence that it exists in nature. If evidence is found, supersymmetry could help explain certain phenomena, such as the nature of dark matter and the hierarchy problem in particle physics.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

<span class="mw-page-title-main">Fine-tuned universe</span> Hypothesis about life in the universe

The characterization of the universe as finely tuned intends to explain why the known constants of nature, such as the electron charge, the gravitational constant, and the like, have their measured values rather than some other arbitrary values. According to the "fine-tuned universe" hypothesis, if these constants' values were too different from what they are, "life as we know it" could not exist. In practice, this hypothesis is formulated in terms of dimensionless physical constants.

<span class="mw-page-title-main">Hierarchy problem</span> Unsolved problem in physics

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity.

<span class="mw-page-title-main">Flatness problem</span> Cosmological fine-tuning problem

The flatness problem is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special' values, and that small deviations from these values would have extreme effects on the appearance of the universe at the current time.

In string theory, the string theory landscape is the collection of possible false vacua, together comprising a collective "landscape" of choices of parameters governing compactifications.

Savas Dimopoulos is a particle physicist at Stanford University. He worked at CERN from 1994 to 1997. Dimopoulos is well known for his work on constructing theories beyond the Standard Model.

Loop quantum cosmology (LQC) is a finite, symmetry-reduced model of loop quantum gravity (LQG) that predicts a "quantum bridge" between contracting and expanding cosmological branches.

In theoretical physics, the μ problem is a problem of supersymmetric theories, concerned with understanding the parameters of the theory.

<span class="mw-page-title-main">Dark energy</span> Energy driving the accelerated expansion of the universe

In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. Assuming that the lambda-CDM model of cosmology is correct, dark energy is the dominant component of the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 26% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 7×10−30 g/cm3, much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

<span class="mw-page-title-main">Cosmological constant problem</span> Concept in cosmology

In cosmology, the cosmological constant problem or vacuum catastrophe is the substantial disagreement between the observed values of vacuum energy density and the much larger theoretical value of zero-point energy suggested by quantum field theory.

<span class="mw-page-title-main">Gordon L. Kane</span>

Gordon Leon Kane is Victor Weisskopf Distinguished University Professor at the University of Michigan and director emeritus at the Leinweber Center for Theoretical Physics (LCTP), a leading center for the advancement of theoretical physics. He was director of the LCTP from 2005 to 2011 and Victor Weisskopf Collegiate Professor of Physics from 2002 - 2011. He received the Lilienfeld Prize from the American Physical Society in 2012, and the J. J. Sakurai Prize for Theoretical Particle Physics in 2017.

<span class="mw-page-title-main">Gian Francesco Giudice</span> Italian theoretical physicist

Gian Francesco Giudice is an Italian theoretical physicist working at CERN in particle physics and cosmology.

<span class="mw-page-title-main">Riccardo Barbieri</span>

Riccardo Barbieri is an Italian theoretical physicist and a professor at the Scuola Normale Superiore di Pisa. He has written more than two hundred research papers in the field of theoretical elementary particle physics, and has been particularly influential in physics beyond the Standard Model.

In particle physics, composite Higgs models (CHM) are speculative extensions of the Standard Model (SM) where the Higgs boson is a bound state of new strong interactions. These scenarios are models for physics beyond the SM presently tested at the Large Hadron Collider (LHC) in Geneva.

<span class="mw-page-title-main">Riccardo Rattazzi</span> Italian theoretical physicist and professor

Riccardo Rattazzi is an Italian theoretical physicist and a professor at the École Polytechnique Fédérale de Lausanne. His main research interests are in physics beyond the Standard Model and in cosmology.

References

  1. Grinbaum, Alexei (1 February 2012). "Which Fine-Tuning Arguments Are Fine?". Foundations of Physics. 42 (5): 615–631. arXiv: 0903.4055 . Bibcode:2012FoPh...42..615G. doi:10.1007/s10701-012-9629-9. S2CID   15590514.
  2. Giudice, Gian (2008). "Naturally Speaking: The Naturalness Criterion and Physics at the LHC". LHC Perspectives. Perspectives on LHC Physics. pp. 155–178. arXiv: 0801.2562 . Bibcode:2008plnc.book..155G. doi:10.1142/9789812779762_0010. ISBN   978-981-277-975-5. S2CID   15078813.
  3. Barbieri, Riccardo; Giudice, Gian Francesco (August 1988). "Upper bounds on supersymmetric particle masses". Nuclear Physics B. 306 (1): 63–76. Bibcode:1988NuPhB.306...63B. doi:10.1016/0550-3213(88)90171-X.
  4. Fowlie, Andrew; Balazs, Csaba; White, Graham; Marzola, Luca; Raidal, Martti (17 August 2016). "Naturalness of the relaxion mechanism". Journal of High Energy Physics. 2016 (8): 100. arXiv: 1602.03889 . Bibcode:2016JHEP...08..100F. doi:10.1007/JHEP08(2016)100. S2CID   119102534.
  5. Fowlie, Andrew (10 July 2014). "CMSSM, naturalness and the ?fine-tuning price? of the Very Large Hadron Collider". Physical Review D. 90 (1): 015010. arXiv: 1403.3407 . Bibcode:2014PhRvD..90a5010F. doi:10.1103/PhysRevD.90.015010. S2CID   118362634.
  6. Fowlie, Andrew (15 October 2014). "Is the CNMSSM more credible than the CMSSM?". The European Physical Journal C. 74 (10). arXiv: 1407.7534 . doi:10.1140/epjc/s10052-014-3105-y. S2CID   119304794.
  7. Cabrera, Maria Eugenia; Casas, Alberto; Austri, Roberto Ruiz de (2009). "Bayesian approach and naturalness in MSSM analyses for the LHC". Journal of High Energy Physics. 2009 (3): 075. arXiv: 0812.0536 . Bibcode:2009JHEP...03..075C. doi:10.1088/1126-6708/2009/03/075. S2CID   18276270.
  8. Fichet, Sylvain (18 December 2012). "Quantified naturalness from Bayesian statistics". Physical Review D. 86 (12): 125029. arXiv: 1204.4940 . Bibcode:2012PhRvD..86l5029F. doi:10.1103/PhysRevD.86.125029. S2CID   119282331.