History of classical field theory

Last updated
Iron filings used to show the magnetic field lines of a bar magnet. Magnet0873.png
Iron filings used to show the magnetic field lines of a bar magnet.

In the history of physics, the concept of fields had its origins in the 18th century in a mathematical formulation of Newton's law of universal gravitation, but it was seen as deficient as it implied action at a distance. In 1852, Michael Faraday treated the magnetic field as a physical object, reasoning about lines of force. James Clerk Maxwell used Faraday's conceptualisation to help formulate his unification of electricity and magnetism in his field theory of electromagnetism.

Contents

With Albert Einstein's special relativity and the Michelson–Morley experiment, it became clear that electromagnetic waves could travel in a vacuum without the need of a medium or luminiferous aether. Einstein also developed general relativity, in which spacetime was treated as a field and its curvature was the origin of the gravitational interactions, putting an end to action at a distance.

In quantum field theory, fields become the fundamental objects of study, and particles are excitations of these fields. To differentiate from quantum field theory, previously developed field theories were called classical field theories.

Early mechanical explanations of forces

Magnetism

Rene Descartes drawing of a magnetic effluvia from 1644. It shows the magnetic effluvia of the Earth (D) attracting several round lodestones (I, K, L, M, N) and illustrates his theory of magnetism. Descartes magnetic field.jpg
René Descartes drawing of a magnetic effluvia from 1644. It shows the magnetic effluvia of the Earth (D) attracting several round lodestones (I, K, L, M, N) and illustrates his theory of magnetism.

The first record of explanations of how magnets works comes from ancient Greece. [1] Thinkers like Thales of Miletus, Aristotle and Diogenes Laertius considered that magnets were animated and should have a soul in order to move. [1] Empedocles tried to provide a mechanical explanation of why magnets could influence each other by introducing the concept of "effluences" emanated by magnets. [1] According to book Quaestiones by Alexander of Aphrodisias from about 200 AD, this was Empedocles view: [1]

On the reason why the lodestone attracts iron. Empedocles says that the iron is attracted to the stone by the effluences which issue from both, and because the pores of the stone are commensurate with the effluences from the iron. The effluences from the stone stir and disperse the air lying upon and obstructing the pores of the iron and when this is removed the iron is drawn on by a concerted outflow. As the effluences from the iron travel towards the pores of the stone, because they are commensurate with them and fit into them the iron itself follows and moves together with them.

Democritus had a similar view as Empedocles but added that the effluences created a void. Metals and rocks could also contain void in order to be less or more attracted to magnets. [1]

This idea survived up to the Scientific Revolution. In 1664, René Descartes produced his theory of magnetism, in which the flow of effluences or effluvia rarified the air, creating differences in air pressure. According to Descartes, these effluvia circulated inside and around the magnet in closed loops. [2]

Gravitation

In ancient times, Greek thinkers like Posidonius (1 BC) noticed a relation between the tides and the position of the Moon in the sky. He considered that light from the Moon had an influence on the tides. [3]

In the 9th century, Abu Ma'shar al-Balkhi (Latinized as Albumasar) wrote his book on The Great Introduction to the Science of Astrology (Kitāb al-madkhal al-kabīr) recorded the correlation between the tides and the Moon, noticing that there were two tides in a day. [4] As there is no moonlight when the Moon is the opposite side of Earth, he proposed that the Moon had some intrinsic virtue that attracted the water. The Sun would have some of that virtue but less than the moon. [3] This book was translated to Latin and was a reference for European medieval scholars. [4] One writer that rejected this astrological reading was Robert Grosseteste who wrote On the Ebb and Flow of the Sea (Latin : Questio de fluxu et refluxu maris), written around 1227, in which he insisted that light from the Moon rarefied the air producing the tides. [4] He explained the tides when the Moon is below the horizon as reflections from the celestial sphere. [3] Two theories coexisted, the idea of light influencing the tides and Albumasar' virtue. Roger Bacon supported the idea of Grosseteste, Albertus Magnus supported a mix of both, and others like Jean Buridan hesitated between the two. [3]

In 17th century, Johannes Kepler who came up with the Kepler's laws of planetary motion, proposed the idea that the Sun emitted some sort of invisible "species" that traveled instantaneously and acted more strongly depending on the distance, size and density of the planet. Kepler considered that if the Sun rotated, it would create a whirlpool of species that drags all planets to orbit around it. [4] The idea of the rotation of the Sun was confirmed by Galileo Galilei, but the frequency did not match Kepler's calculations. [4] To explain the tides, Kepler considered that the species would behave similar to magnetic forces. [4]

Descartes rejected Kepler's theory [4] and also constructed also a mechanical explanation of gravitation based on the ideas vortices, considering space continuous. [5]

Newtonian gravitation

In Isaac Newton's classical gravitation, mass is the source of an attractive gravitational field. Newtonian gravity field (physics).svg
In Isaac Newton's classical gravitation, mass is the source of an attractive gravitational field.

Newtonian mechanics

Before Newton, only a few mechanical explanations of gravity existed.

In 1687, Newton's Principia in 1687 provided a framework with which to investigate the motion and forces. He introduced mathematical definition of gravitational force with his law of universal gravitation, in which the gravitational force between two bodies is directed along the line separating the bodies and its magnitude is proportional to the product of their masses, divided by the square of their distance apart. [6]

While Newton explanation of gravity was very successful in astronomy, it did not explain how it could act at a distance and instantaneously. Newton, considered action at a distance to be:

so great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it. [7]

Isaac Newton, Letters to Bentley, 1692/3

Gottfried Wilhelm Leibniz complained that Newtonian mechanics violated the metaphysics of continuity according to natura non facit saltus , in which every cause and effect should be connected to one another. [2] Roger Joseph Boscovich rejected Leibniz take considering that bodies would have discontinuous changes in density at the boundaries and that if came into contact their velocities would change discontinuously. [2]

British empiricist like John Locke, George Locke and David Hume regarded Newton's second law of motion as sufficient, as it establishes a causal relation between force and acceleration. [2]

Beginning of aether theories

To solve the issue of action at a distance, aether theories were developed. The aether was considered as a yet undetected medium and responsible agent for conducting the force. In a letter to Robert Boyle in 1679 Newton proposed an "aethereal substance" to explain gravity. [4] Later in his work Opticks of 1717 he considered the aether to be made of impenetrable corpuscules. [4] [8] Newtonian aether was very dilute and elastic. [8] Immanuel Kant considered Newton's aether inconsistent as requiring additional forces between corpuscles. [8] Leibniz on the other hand considered a continuous medium. [8]

Eulerian fluid dynamics

Velocity field lines around a ball in a fluid. The arrows indicate the velocity of the fluid. Stokes sphere.svg
Velocity field lines around a ball in a fluid. The arrows indicate the velocity of the fluid.

An important development of field theories appeared with Leonhard Euler who expanded Newtonian mechanics in his work Mechanica of 1736. Euler work expanded on how to deal with rotations of rigid bodies, elasticity and fluid mechanics. To describe fluids he considered a flow velocity function (today called velocity field) defined at every point in space. [4] However this function was for a long time considered significantly different from that of the forces of gravitation as it was only defined inside a medium and thus was considered a real quantity. [4] Modern science historian Mary Hesse attributed the origin of field theory to Euler flow velocity field. [4]

Euler also introduced between 1755 and 1759 the Lagrangian and Eulerian specifications for the flow [9] that would be important to detach motion of particles from field properties.[ citation needed ]

Potential theory

Joseph-Louis Lagrange is often cited for introducing the concept of a potential in 1777, and independently by Adrien-Marie Legendre (1784–1794) and Pierre-Simon Laplace (1782–1799). [10] [11] Lagrange notice that he could introduce a gravitational potential to derive the gravitational force. [10] This function was called a potential function by mathematician George Green 1828 and by Carl Friedrich Gauss in 1840 just as "potential". [10]

Forces of electricity and magnetism

Charles-Augustin de Coulomb showed in 1785 that the repulsive force between two electrically charged spheres obeys the same (up to a sign) force law as Newton's law of universal gravitation. In 1823, Siméon Denis Poisson introduced the Poisson's equation, explaining the electric forces in terms of an electric potential. [12] The same year André-Marie Ampère showed that the force between infinitesimal lengths of current-carrying wires similarly obeys an inverse-square law such that the force is directed along the line of separation between the wire elements. [8] These law suffered from the same problem of action-at-a-distance.

Luminiferous aether

In 1800, Thomas Young proved the wave nature of light using the double-slit experiment. This discovery led him in 1802 to consider the existence of luminiferous aether in which light traveled. [8] Augustin-Jean Fresnel considered it to be an elastic medium. [8] The motion of this aether were described mathematically by scientist like Claude-Louis Navier (in 1821) and Augustin-Louis Cauchy (in 1828) as discrete medium. [8] About 1840, George Stokes and Lord Kelvin extended the formalism to describe a continuous aether using the idea of a potential theory. This development was important as it allowed to describe any deformable medium in terms of continuous functions. [8]

Introduction of fields

Faraday's lines of force

Magnetic field lines of a magnetic dipole. VFPt Dipole field.svg
Magnetic field lines of a magnetic dipole.

Michael Faraday developed the concept of lines of force to describe electric and magnetic phenomena. [13] In 1831, he writes [13]

By magnetic curves, I mean the lines of magnetic forces, however modified by the juxtaposition of poles, which would be depicted by iron filings; or those to ·which a very small magnetic needle would form a tangent."

He provided a definition in 1845, [13]

But before I proceed to them, I will define the meaning I connect with certain terms which I shall have occasion to use: thus, by line of magnetic force, or magnetic line of force, or magnetic curve, I mean that exercise of magnetic force which is exerted in the lines usually called magnetic curves, and which equally exist as passing from or to magnetic poles, or forming concentric circles round an electric current. By line of electric force, I mean the force exerted in the lines joining two bodies, acting on each other according to the principles of static electric induction, which may also be either in curved or straight lines.

In his work, he also coined the term "magnetic field" in this sense in 1845, which he later used frequently. [13] He provided a clear definition in 1850, stating [13]

I will now endeavour to consider what the influence is which paramagnetic and diamagnetic bodies, viewed as conductors, exert upon the lines of force in a magnetic field. Any portion of space traversed by lines of magnetic power, may be taken as such a field, and there is probably no space without them. The condition of the field may vary in intensity of power. from place to place, either along the lines or across them; but it will be better to assume for the present consideration a field of equal force throughout, and I have formerly described how this may, for a certain limited space, be produced.

Faraday did not conceive of this field as a mere mathematical construct for calculating the forces between particles—having only rudimentary mathematical training, he had no use for abstracting reality to make quantitative predictions. [8] Instead he conjectured that there was force filling the space where electromagnetic fields were generated and reasoned qualitatively about these forces with lines of force: [14]

Important to the definition of these lines is that they represent a determinate and unchanging amount of force. Though, therefore, their forms, as they exist between two or more centers or sources of power, may vary greatly, and also the space through which they may be traced, yet the sum of power contained in any one section of a given portion of the lines is exactly equal to the sum of power in any other section of the same lines, however altered in form or however convergent or divergent they may be at the second place.

However Faraday never used the term "electric field" explicitly. [13] Nevertheless Faraday's insights into the behavior of magnetic fields would prove invaluable for the development of electromagnetism and field theory.

Kelvin's definition

In 1845, Lord Kelvin formalized the mathematical similarities between the fields of electromagnetic phenomena and Joseph Fourier work on heat; and in 1947 between electric conduction and elasticity. [2] These similarities led Lord Kelvin to propose a formal definition of magnetic field [2] in 1851: [4]

Any space at every point of which there is a finite magnetic force is called ‘a field of magnetic force’ or (magnetic being understood) simply ‘a field of force,’ or sometimes ‘a magnetic field’.

Lord Kelvin, On the theory of magnetic induction in crystalline and non-crystalline substances, [15]

Kelvin also introduced the concept of a magnetic vector potential. [16]

Maxwell's electromagnetic field

Electric and magnetic fields of an electromagnetic wave along an axis. In vacuum these two fields are orthogonal and propagate at the speed of light as predicted by Maxwell. Electromagnetic wave EN.svg
Electric and magnetic fields of an electromagnetic wave along an axis. In vacuum these two fields are orthogonal and propagate at the speed of light as predicted by Maxwell.

In 1864, James Clerk Maxwell published "A Dynamical Theory of the Electromagnetic Field" in which he compiled all known equations of electricity and magnetism. Maxwell's equations led to an electromagnetic wave equation with waves that propagated in vacuum at the speed of light. He describes his research as

(3) The theory I propose may therefore be called a theory of the Electromagnetic Field, because it has to do with the space in the neighbourhood of the electric and magnetic bodies, and it may be called a Dynamical Theory, because it assumes that in that space there is matter in motion, by which the observed electromagnetic phenomena are produced

(4) The electromagnetic field is that part of space which contains and surrounds bodies in electric or magnetic conditions

In A Treatise on Electricity and Magnetism of 1873, he writes "the electric field is the portion of space in the neighbourhood of electrified bodies, considered with reference to electric phenomena." And for magnetic fields

lt appears therefore that in the space surrounding a wire transmitting an electric current a magnet is acted on by forces dependent on the position of the wire and on the strength of the current. The space in which these forces act may therefore be considered as a magnetic field, and we may study it in the same way as we have already studied the field in the neighbourhood of ordinary magnets, by tracing the course of the lines of magnetic force, and measuring the intensity of the force at every point.

Maxwell had to settle for the idea of a luminiferous aether. He wrote [16]

We have therefore some reason to believe, from the phenomena of light and heat, that there is an aethereal medium filling space and permeating bodies, capable of being set in motion and of transmitting that motion from one part to another, and of communicating that motion to gross matter so as to heat it and affect it in various ways.

Maxwell was conflicted on the idea on the nature of the fields, he considered the aether to a mechanical medium in order to carry energy. [2] In 1868 Carl Neumann discussed the idea of the electromagnetic field being an independent energy field. [2]

In 1887, Heinrich Hertz published his experimental evidence of the existence of electromagnetic waves. [2]

Relativistic field theory

Special relativity

The 1887 Michelson–Morley experiment attempted to prove that electromagnetic radiation were oscillations of a luminiferous aether, however the result was negative, indicating that radiation could travel in vacuum. To explain this phenomenon, Albert Einstein developed his theory of special relativity (1905) which resolved the conflicts between classical mechanics and electromagnetism. Einstein introduced the Lorentz transformation for electromagnetic fields between reference frames.

Space-time as a field

Einstein developed the Einstein field equations of general relativity in 1915, consistent with special relativity and that could explain gravitation in terms of a field theory of spacetime. This removed the need of a gravitational aether.

In 1918, Emmy Noether publishes the her theorem on the relations between symmetries and conservation laws. [17] Noether's theorem was adapted to general relativity as well as to non-relativistic field theories. [17]

Unification attempts

Attempts to create a unified field theory based on classical physics are classical unified field theories. During the years between the two World Wars, the idea of unification of gravity with electromagnetism was actively pursued by several mathematicians and physicists like Einstein, Theodor Kaluza, [18] Hermann Weyl, [19] Arthur Eddington, [20] Gustav Mie [21] and Ernst Reichenbacher. [22]

Early attempts to create such theory were based on incorporation of electromagnetic fields into the geometry of general relativity. In 1918, the case for the first geometrization of the electromagnetic field was proposed in 1918 by Weyl. [23] In this work Weyl coins the term gauge theory. [24] Weyl, in an attempt to generalize the geometrical ideas of general relativity to include electromagnetism, conjectured that Eichinvarianz or invariance under the change of scale (or "gauge") might also be a local symmetry of general relativity.

In 1919, the idea of a five-dimensional approach was suggested by Kaluza. [23] From that, a theory called Kaluza–Klein theory was developed. It attempts to unify gravitation and electromagnetism, in a five-dimensional space-time. There are several ways of extending the representational framework for a unified field theory which have been considered by Einstein and other researchers. These extensions in general are based in two options. [23] The first option is based in relaxing the conditions imposed on the original formulation, and the second is based in introducing other mathematical objects into the theory. [23] An example of the first option is relaxing the restrictions to four-dimensional space-time by considering higher-dimensional representations. [23] That is used in Kaluza–Klein theory. For the second, the most prominent example arises from the concept of the affine connection that was introduced into general relativity mainly through the work of Tullio Levi-Civita and Weyl. [23]

Further development of quantum field theory changed the focus of searching for unified field theory from classical to quantum description. Because of that, many theoretical physicists gave up looking for a classical unified field theory. [23] Quantum field theory would include unification of two other fundamental interactions of nature, the strong and weak nuclear force which act on the subatomic level. [25] [26]

Quantum fields

Fields become the fundamental object of study in quantum field theory. Mathematically, quantum fields are formalized as operator-valued distributions. [27] Although there is no direct method of measuring the fields themselves, the framework asserts that all particles are "excitations" of these fields. For example: whereas Maxwell's theory of classical electromagnetism describes light as a self-propagating wave in the electromagnetic field, in quantum electrodynamics light is the massless gauge boson particle called the photon. Furthermore, the number of particles in an isolated system need not be conserved; an example of a process for which this is the case is bremsstrahlung. More detailed understanding of the framework is obtained by studying the Lagrangian density of a field theory which encodes the information of its allowed particle interactions. [28]

See also

Related Research Articles

<span class="mw-page-title-main">Electromagnetism</span> Fundamental interaction between charged particles

In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles. Electric forces cause an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs between charged particles in relative motion. These two forces are described in terms of electromagnetic fields. Macroscopic charged objects are described in terms of Coulomb's law for electricity and Ampère's force law for magnetism; the Lorentz force describes microscopic charged particles.

In physics, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist:

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Magnetic field</span> Distribution of magnetic force

A magnetic field is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, electric currents, and electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, called a vector field.

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics.

<span class="mw-page-title-main">Introduction to gauge theory</span> Introductory article

A gauge theory is a type of theory in physics. The word gauge means a measurement, a thickness, an in-between distance, or a resulting number of units per certain parameter. Modern theories describe physical forces in terms of fields, e.g., the electromagnetic field, the gravitational field, and fields that describe forces between the elementary particles. A general feature of these field theories is that the fundamental fields cannot be directly measured; however, some associated quantities can be measured, such as charges, energies, and velocities. For example, say you cannot measure the diameter of a lead ball, but you can determine how many lead balls, which are equal in every way, are required to make a pound. Using the number of balls, the density of lead, and the formula for calculating the volume of a sphere from its diameter, one could indirectly determine the diameter of a single lead ball.

Action at a distance is the concept in physics that an object's motion can be affected by another object without the two being in physical contact; that is, it is the concept of the non-local interaction of objects that are separated in space. Coulomb's law and Newton's law of universal gravitation are based on action at a distance.

In theoretical physics, geometrodynamics is an attempt to describe spacetime and associated phenomena completely in terms of geometry. Technically, its goal is to unify the fundamental forces and reformulate general relativity as a configuration space of three-metrics, modulo three-dimensional diffeomorphisms. The origin of this idea can be found in an English mathematician William Kingdon Clifford's works. This theory was enthusiastically promoted by John Wheeler in the 1960s, and work on it continues in the 21st century.

In physics, a unified field theory (UFT) is a type of field theory that allows all fundamental forces and elementary particles to be written in terms of a single type of field. According to modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields. Furthermore, according to quantum field theory, particles are themselves the quanta of fields. Examples of different fields in physics include vector fields such as the electromagnetic field, spinor fields whose quanta are fermionic particles such as electrons, and tensor fields such as the metric tensor field that describes the shape of spacetime and gives rise to gravitation in general relativity. Unified field theory attempts to organize these fields into a single mathematical structure.

Since the 19th century, some physicists, notably Albert Einstein, have attempted to develop a single theoretical framework that can account for all the fundamental forces of nature – a unified field theory. Classical unified field theories are attempts to create a unified field theory based on classical physics. In particular, unification of gravitation and electromagnetism was actively pursued by several physicists and mathematicians in the years between the two World Wars. This work spurred the purely mathematical development of differential geometry.

A classical field theory is a physical theory that predicts how one or more fields in physics interact with matter through field equations, without considering effects of quantization; theories that incorporate quantum mechanics are called quantum field theories. In most contexts, 'classical field theory' is specifically intended to describe electromagnetism and gravitation, two of the fundamental forces of nature.

In the history of physics, aether theories proposed the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models.

<span class="mw-page-title-main">Relativistic electromagnetism</span> Physical phenomenon in electromagnetic field theory

Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations.

In the history of physics, a line of force in Michael Faraday's extended sense is synonymous with James Clerk Maxwell's line of induction. According to J.J. Thomson, Faraday usually discusses lines of force as chains of polarized particles in a dielectric, yet sometimes Faraday discusses them as having an existence all their own as in stretching across a vacuum. In addition to lines of force, J.J. Thomson—similar to Maxwell—also calls them tubes of electrostatic inductance, or simply Faraday tubes. From the 20th century perspective, lines of force are energy linkages embedded in a 19th-century field theory that led to more mathematically and experimentally sophisticated concepts and theories, including Maxwell's equations and Albert Einstein's theory of relativity.

<span class="mw-page-title-main">Moving magnet and conductor problem</span> Thought experiment in physics

The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v, with respect to a magnet is calculated in the frame of reference of the magnet and in the frame of reference of the conductor. The observable quantity in the experiment, the current, is the same in either case, in accordance with the basic principle of relativity, which states: "Only relative motion is observable; there is no absolute standard of rest". However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.

<span class="mw-page-title-main">History of electromagnetic theory</span>

The history of electromagnetic theory begins with ancient measures to understand atmospheric electricity, in particular lightning. People then had little understanding of electricity, and were unable to explain the phenomena. Scientific understanding and research into the nature of electricity grew throughout the eighteenth and nineteenth centuries through the work of researchers such as André-Marie Ampère, Charles-Augustin de Coulomb, Michael Faraday, Carl Friedrich Gauss and James Clerk Maxwell.

<span class="mw-page-title-main">Branches of physics</span> Overview of the branches of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In science, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. An example of a scalar field is a weather map, with the surface temperature described by assigning a number to each point on the map. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

<span class="mw-page-title-main">History of Maxwell's equations</span>

By the first half of the 19th century, the understanding of electromagnetics had improved through many experiments and theoretical work. In the 1780s, Charles-Augustin de Coulomb established his law of electrostatics. In 1825, André-Marie Ampère published his force law. In 1831, Michael Faraday discovered electromagnetic induction through his experiments, and proposed lines of forces to describe it. In 1834, Emil Lenz solved the problem of the direction of the induction, and Franz Ernst Neumann wrote down the equation to calculate the induced force by change of magnetic flux. However, these experimental results and rules were not well organized and sometimes confusing to scientists. A comprehensive summary of the electrodynamic principles was needed.

Electromagnetism is one of the fundamental forces of nature. Early on, electricity and magnetism were studied separately and regarded as separate phenomena. Hans Christian Ørsted discovered that the two were related – electric currents give rise to magnetism. Michael Faraday discovered the converse, that magnetism could induce electric currents, and James Clerk Maxwell put the whole thing together in a unified theory of electromagnetism. Maxwell's equations further indicated that electromagnetic waves existed, and the experiments of Heinrich Hertz confirmed this, making radio possible. Maxwell also postulated, correctly, that light was a form of electromagnetic wave, thus making all of optics a branch of electromagnetism. Radio waves differ from light only in that the wavelength of the former is much longer than the latter. Albert Einstein showed that the magnetic field arises through the relativistic motion of the electric field and thus magnetism is merely a side effect of electricity. The modern theoretical treatment of electromagnetism is as a quantum field in quantum electrodynamics.

References

  1. 1 2 3 4 5 Guimarães, Alberto Passos (2005). "A Stone with a Soul". From Lodestone to Supermagnets: Understanding Magnetic Phenomena. Wiley-VCH. ISBN   978-3-527-40557-2.
  2. 1 2 3 4 5 6 7 8 9 Cao, Tian Yu (2019-10-03). Conceptual Development of 20th Century Field Theories. Cambridge University Press. ISBN   978-1-108-47607-2.
  3. 1 2 3 4 Deparis, Vincent; Legros, Hilaire; Souchay, Jean (2013), Souchay, Jean; Mathis, Stéphane; Tokieda, Tadashi (eds.), "Investigations of Tides from the Antiquity to Laplace", Tides in Astronomy and Astrophysics, vol. 861, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 31–82, Bibcode:2013LNP...861...31D, doi:10.1007/978-3-642-32961-6_2, ISBN   978-3-642-32960-9 , retrieved 2024-10-03
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 McMullin, Ernan (2002-02-01). "The Origins of the Field Concept in Physics". Physics in Perspective. 4 (1): 13–39. Bibcode:2002PhP.....4...13M. doi:10.1007/s00016-002-8357-5. ISSN   1422-6944.
  5. Slowik, Edward (2023), "Descartes' Physics", in Zalta, Edward N.; Nodelman, Uri (eds.), The Stanford Encyclopedia of Philosophy (Winter 2023 ed.), Metaphysics Research Lab, Stanford University, retrieved 2024-10-02
  6. Hesse, Mary B. (2005). Forces and fields: the concept of action at a distance in the history of physics (Dover ed.). Mineola, N.Y: Dover Publications. ISBN   978-0-486-44240-2.
  7. Berkovitz, Joseph (2008). "Action at a Distance in Quantum Mechanics". In Edward N. Zalta (ed.). The Stanford Encyclopedia of Philosophy (Winter 2008 ed.).
  8. 1 2 3 4 5 6 7 8 9 10 Forbes, Nancy (2014). Faraday, Maxwell, and the Electromagnetic Field: How Two Men Revolutionized Physics. Amherst, NY: Prometheus Press. ISBN   978-1616149420.
  9. Lamb, Sir Horace (1945-01-01). Hydrodynamics. Courier Corporation. ISBN   978-0-486-60256-1.
  10. 1 2 3 "Potential theory - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2024-10-16.
  11. "Joseph Louis Lagrange | A Short Account of the History of Mathematics | W.W. Rouse Ball | Lit2Go ETC". etc.usf.edu. Retrieved 2024-10-16.
  12. Kosmann-Schwarzbach, Yvette (2022-11-29). "Seven Concepts Attributed to Siméon-Denis Poisson". SIGMA. Symmetry, Integrability and Geometry: Methods and Applications. 18: 092. arXiv: 2211.15946 . doi:10.3842/SIGMA.2022.092.
  13. 1 2 3 4 5 6 Assis, A. K T.; Ribeiro, J. E. A.; Vannucci, A. (2009). "The field concepts of Faraday and Maxwell". Trends in Physics. Sao Paolo, Brazil.
  14. Faraday, Michael. "Experimental Researches in Electricity.--Twenty-Eighth Series." Philosophical Transactions of the Royal Society of London 142 (1852): 25-56. JSTOR 108532.
  15. William Thomson, ‘‘On the theory of magnetic induction in crystalline and non-crystalline substances,’’ Philosophical Magazine 1, (1851), 177–186; on 179.
  16. 1 2 Yang, Chen Ning (2014-11-01). "The conceptual origins of Maxwell's equations and gauge theory". Physics Today. 67 (11): 45–51. Bibcode:2014PhT....67k..45Y. doi:10.1063/PT.3.2585. ISSN   0031-9228.
  17. 1 2 Kosmann-Schwarzbach, Yvette (2010-11-17). The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century. Springer Science & Business Media. ISBN   978-0-387-87868-3.
  18. Kaluza, Theodor (1921). "Zum Unitätsproblem in der Physik". Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.): 966–972. Bibcode:1921SPAW.......966K.
  19. Weyl, H. (1918). "Gravitation und Elektrizität". Sitz. Preuss. Akad. Wiss.: 465.
  20. Eddington, A. S. (1924). The Mathematical Theory of Relativity, 2nd ed. Cambridge Univ. Press.
  21. Mie, G. (1912). "Grundlagen einer Theorie der Materie". Annalen der Physik. 37 (3): 511–534. Bibcode:1912AnP...342..511M. doi:10.1002/andp.19123420306.
  22. Reichenbächer, E. (1917). "Grundzüge zu einer Theorie der Elektrizität und der Gravitation". Annalen der Physik. 52 (2): 134–173. Bibcode:1917AnP...357..134R. doi:10.1002/andp.19173570203.
  23. 1 2 3 4 5 6 7 Sauer, Tilman (May 2014), "Einstein's Unified Field Theory Program", in Janssen, Michel; Lehner, Christoph (eds.), The Cambridge Companion to Einstein, Cambridge University Press, ISBN   9781139024525
  24. Brading, Katherine (March 2002). "Which Symmetry? Noether, Weyl, and Conservation of Electric Charge". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 33 (1): 3–22. Bibcode:2002SHPMP..33....3B. doi:10.1016/S1355-2198(01)00033-8.
  25. Gadzirayi Nyambuya, Golden (October 2007). "Unified Field Theory – Paper I, Gravitational, Electromagnetic, Weak & the Strong Force" (PDF). Apeiron. 14 (4): 321. Retrieved 30 December 2017.
  26. De Boer, W. (1994). "Grand unified theories and supersymmetry in particle physics and cosmology" (PDF). Progress in Particle and Nuclear Physics. 33: 201–301. arXiv: hep-ph/9402266 . Bibcode:1994PrPNP..33..201D. doi:10.1016/0146-6410(94)90045-0. S2CID   119353300 . Retrieved 30 December 2017.
  27. Wald, Robert M. (2006-08-03). "The History and Present Status of Quantum Field Theory in Curved Spacetime". arXiv: gr-qc/0608018 .
  28. V., Schroeder, Daniel (1995). An introduction to quantum field theory . Addison-Wesley. ISBN   9780201503975. OCLC   20393204.{{cite book}}: CS1 maint: multiple names: authors list (link)