Oxford Calculators

Last updated

Richard Swineshead, Calculator, 1520 Swineshead, Richard - Calculator, 1520 - BEIC 143141.jpg
Richard Swineshead, Calculator, 1520

The Oxford Calculators were a group of 14th-century thinkers, almost all associated with Merton College, Oxford; for this reason they were dubbed "The Merton School". These men took a strikingly logical and mathematical approach to philosophical problems. The key "calculators", writing in the second quarter of the 14th century, were Thomas Bradwardine, William Heytesbury, Richard Swineshead and John Dumbleton. [1] Using the slightly earlier works of Walter Burley, Gerard of Brussels, and Nicole Oresme, these individuals expanded upon the concepts of 'latitudes' and what real world applications they could apply them to.

Contents

Science

The advances these men made were initially purely mathematical but later became relevant to mechanics. Using Aristotelian logic and physics, they studied and attempted to quantify physical and observable characteristics such as: heat, force, color, density, and light. Aristotle believed that only length and motion were able to be quantified. But they used his philosophy and proved it untrue by being able to calculate things such as temperature and power. [2] Although they attempted to quantify these observable characteristics, their interests lay more in the philosophical and logical aspects than in natural world. They used numbers to disagree philosophically and prove the reasoning of "why" something worked the way it did and not only "how" something functioned the way that it did. [3]

Historian David C. Lindberg and professor Michael H. Shank in their 2013 book, Cambridge History of Science, Volume 2: Medieval Science, wrote: [4]

Like Bradwardine's theorem, the methods and results of the other Oxford Calculators spread to the continent over the next generation, appearing most notably at the Univeristy of Paris in the works of Albert of Saxony, Nichole Oreseme, and Marsilius of Inghen.

Lawrence M. Principe wrote [5] :

A group known as the Oxford Calculators had begun applying mathematics to motion in the 1300s; in fact, Galileo begins his exposition of kinematics in the Two New Sciences with a theorem they enunciated. But Galileo went much further by linking mathematical abstraction tightly with experimental observation.

Mean Speed Theorem

The Oxford Calculators distinguished kinematics from dynamics, emphasizing kinematics, and investigating instantaneous velocity. It is through their understanding of geometry and how different shapes could be used to represent a body in motion. The Calculators related these bodies in relative motion to geometrical shapes and also understood that a right triangle's area would be equivalent to a rectangle's if the rectangle's height was half of the triangle's. [6] This, and developing Al-Battani's work on trigonometry is what led to the formulating of the mean speed theorem (though it was later credited to Galileo) which is also known as "The Law of Falling Bodies". [7] A basic definition of the mean speed theorem is; a body moving with constant speed will travel the same distance as an accelerated body in the same period of time as long as the body with constant speed travels at half of the sum of initial and final velocities for the accelerated body. Its earliest known mention is found in Heytesbury's Rules for Solving Sophisms: a body uniformly accelerated or decelerated for a given time covers the same distance as it would if it were to travel for the same time uniformly with the speed of the middle instant of its motion, which is defined as its mean speed. [4] Relative motion, also referred to as local motion, can be defined as motion relative to another object where the values for acceleration, velocity, and position are dependent upon a predetermined reference point.

The mathematical physicist and historian of science Clifford Truesdell, wrote: [8]

The now published sources prove to us, beyond contention, that the main kinematical properties of uniformly accelerated motions, still attributed to Galileo by the physics texts, were discovered and proved by scholars of Merton college.... In principle, the qualities of Greek physics were replaced, at least for motions, by the numerical quantities that have ruled Western science ever since. The work was quickly diffused into France, Italy, and other parts of Europe. Almost immediately, Giovanni di Casale and Nicole Oresme found how to represent the results by geometrical graphs, introducing the connection between geometry and the physical world that became a second characteristic habit of Western thought ...

Boethian Theory

In Tractatus de proportionibus (1328), Bradwardine extended the theory of proportions of Eudoxus to anticipate the concept of exponential growth, later developed by the Bernoulli and Euler, with compound interest as a special case. Arguments for the mean speed theorem (above) require the modern concept of limit, so Bradwardine had to use arguments of his day. Mathematician and mathematical historian Carl Benjamin Boyer writes, "Bradwardine developed the Boethian theory of double or triple or, more generally, what we would call 'n-tuple' proportion". [9]

Boyer also writes that "the works of Bradwardine had contained some fundamentals of trigonometry". Yet "Bradwardine and his Oxford colleagues did not quite make the breakthrough to modern science." [10] The most essential missing tool was algebra.

A group known as the Oxford Calculators had begun applying mathematics to motion in the 1300s; in fact, Galileo begins his exposition of kinematics in the Two New Sciences with a theorem they enunciated. But Galileo went much further by linking mathematical abstraction tightly with experimental observation.

Bradwardine's Rule

Lindberg and Shank also wrote:

In Book VII of Physics, Aristotle had treated in general the relation between powers, moved bodies, distance, and time, but his suggestions there were sufficiently ambiguous to give rise to considerable discussion and disagreement among his medieval commentators. The most successful theory, as well as the most mathematically sophisticated, was proposed by Thomas Bradwardine in his Treatise on the Ratios of Speeds in Motions. In this tour de force of medieval natural philosophy, Bradwardine devised a single simple rule to govern the relationship between moving and resisting powers and speeds that was both a brilliant application of mathematics to motion and also a tolerable interpretation of Aristotle's text.

Latitude of Forms

The Latitude of Forms is a topic that many of the Oxford Calculators published volumes on. Developed by Nicole Orseme, a “Latitude" is an abstract concept of a range that forms may vary inside of. Before latitudes were introduced into mechanics, they were used in both medical and philosophical fields. Medical authors Galen and Avicenna can be given credit for the origin of the concept. “Galen says, for instance, that there is a latitude of health which is divided into three parts, each in turn having some latitude. First, there is the latitude of healthy bodies, second the latitude of neither health nor sickness, and third the latitude of sickness.” [11] The calculators attempted to measure and explain these changes in latitude concretely and mathematically. John Dumbleton discusses latitudes in Part II and Part III of his work the Summa. He is critical of earlier philosophers in Part II as he believes latitudes are measurable and quantifiable and later in Part III of the Summa attempts to use latitudes to measure local motion. [12] Roger Swineshead defines five latitudes for local motion being: First, the latitude of local motion, Second, the latitude of velocity of local motion, Third, the latitude of slowness of the local motion, Fourth, the latitude of the acquisition of the latitude of local motion, and the Fifth being, the latitude of the loss of the latitude of local motion. Each of these latitudes are infinite and are comparable to the velocity, acceleration, and deceleration of the local motion of an object. [13]

People

Thomas Bradwardine

Thomas Bradwardine was born in 1290 in Sussex, England. An attending student educated at Balliol College, Oxford, he earned various degrees. He was a secular cleric, a scholar, a theologist, a mathematician, and a physicist. He became chancellor of the diocese of London and Dean of St Paul's, as well as chaplain and confessor to Edward III. During his time at Oxford, he authored many books including: De Geometria Speculativa (printed in Paris, 1530), De Arithmetica Practica (printed in Paris, 1502), and De Proportionibus Velocitatum in Motibus (printed in Paris in 1495). Bradwardine furthered the study of using mathematics to explain physical reality. Drawing on the work of Robert Grosseteste, Robert Kilwardby and Roger Bacon, his work was in direct opposition to William of Ockham. [14]

Aristotle suggested that velocity was proportional to force and inversely proportional to resistance, doubling the force would double the velocity but doubling the resistance would halve the velocity (V  F/R). Bradwardine objected saying that this is not observed because the velocity does not equal zero when the resistance exceeds the force. Instead, he proposed a new theory that, in modern terms, would be written as (V  log F/R), which was widely accepted until the late sixteenth century. [15]

William Heytesbury

William Heytesbury was a bursar at Merton until the late 1330s and he administered the college properties in Northumberland. Later in his life he was a chancellor of Oxford. He was the first to discover the mean-speed theorem, later "The Law of Falling Bodies". Unlike Bradwardine's theory, the theorem, also known as "The Merton Rule" is a probable truth. [15] His most noted work was Regulae Solvendi Sophismata (Rules for Solving Sophisms). Sophisma is a statement which one can argue to be both true and false. The resolution of these arguments and determination of the real state of affairs forces one to deal with logical matters such as the analysis of the meaning of the statement in question, and the application of logical rules to specific cases. An example would be the statement, "The compound H2O is both a solid and a liquid". When the temperature is low enough this statement is true. But it may be argued and proven false at a higher temperature. In his time, this work was logically advanced. He was a second generation calculator. He built on Richard Klivingston's "Sophistimata and Bradwardine's "Insolubilia". Later, his work went on to influence Peter of Mantura and Paul of Venice. [16]

Richard Swineshead

Richard Swineshead was also an English mathematician, logician, and natural philosopher. The sixteenth-century polymath Girolamo Cardano placed him in the top-ten intellects of all time, alongside Archimedes, Aristotle, and Euclid. [15] He became a member of the Oxford calculators in 1344. His main work was a series of treatises written in 1350. This work earned him the title of "The Calculator". His treatises were named Liber Calculationum, which means "Book of Calculations". His book dealt in exhaustive detail with quantitative physics and he had over fifty variations of Bradwardine's law.

John Dumbleton

John Dumbleton became a member of the calculators in 1338–39. After becoming a member, he left the calculators for a brief period of time to study theology in Paris in 1345–47. After his study there he returned to his work with the calculators in 1347–48. One of his main pieces of work, Summa logicae et philosophiae naturalis, focused on explaining the natural world in a coherent and realistic manner, unlike some of his colleagues, claiming that they were making light of serious endeavors. [17] Dumbleton attempted many solutions to the latitude of things, most were refuted by Richard Swineshead in his Liber Calculationum. [18]

See also

Notes

  1. Sylla, Edith D. (1973). "Medieval Concepts of the Latitude of Forms: The Oxford Calculators". Archives d'histoire doctrinale et littéraire du Moyen Âge. 40: 223–283. ISSN   0373-5478. JSTOR   44403231.
  2. Agutter, Paul S.; Wheatley, Denys N. (2008) "Thinking About Life"
  3. Paul S. Agutter, and Denys N. Wheatley (ed.). Thinking About Life. Springer. ISBN   978-1-4020-8865-0.
  4. 1 2 Lindberg, David C., ed. (2015). The Cambridge history of science. Vol. 2: Medieval science / ed. by David C. Lindberg (1. paperback ed.). New York, NY: Cambridge Univ. Press. ISBN   978-1-107-52164-3.
  5. Principe, Lawrence (2011). The Scientific Revolution: A Very Short Introduction. Oxford University Press.
  6. Clagett, Marshall (1964). "Nicole Oresme and Medieval Scientific Thought". Proceedings of the American Philosophical Society. 108 (4): 308–309. ISSN   0003-049X. JSTOR   985910.
  7. Gavroglu, Kostas; Renn, Jurgen (2007) "Positioning the History of Science"
  8. Clifford Truesdell, Essays in The History of Mechanics, (Springer-Verlag, New York, 1968)
  9. Carl B. Boyer, Uta C. Merzbach. A History of Mathematics.
  10. Norman F. Cantor (2001). In the Wake of the Plague: The Black Death and the World it Made . Simon and Schuster. p.  122. ISBN   9780684857350.
  11. Sylla, Edith D. (1973). "Medieval Concepts of the Latitude of Forms: The Oxford Calculators". Archives d'histoire doctrinale et littéraire du Moyen Âge. 40: 226–227. ISSN   0373-5478. JSTOR   44403231.
  12. Sylla, Edith D. (1973). "Medieval Concepts of the Latitude of Forms: The Oxford Calculators". Archives d'histoire doctrinale et littéraire du Moyen Âge. 40: 252. ISSN   0373-5478. JSTOR   44403231.
  13. Sylla, Edith D. (1973). "Medieval Concepts of the Latitude of Forms: The Oxford Calculators". Archives d'histoire doctrinale et littéraire du Moyen Âge. 40: 240. ISSN   0373-5478. JSTOR   44403231.
  14. Weisheipl, James A. (1959). "The Place of John Dumbleton in the Merton School". Isis. 50 (4): 445–446. doi:10.1086/348799. ISSN   0021-1753. JSTOR   226428. S2CID   143732269.
  15. 1 2 3 Mark Thakkar (2007). "The Oxford Calculators". Oxford Today.
  16. Longeway, John (2022). William Heytesbury. Stanford Encyclopedia of Philosophy.
  17. Molland, George (23 September 2004). "Dumbleton, John". Oxford Dictionary of National Biography.
  18. Weisheipl, James A. (1959). "The Place of John Dumbleton in the Merton School". Isis. 50 (4): 439–454. doi:10.1086/348799. ISSN   0021-1753. JSTOR   226428. S2CID   143732269.

Related Research Articles

Inertia is the tendency of objects in motion to stay in motion, and objects at rest to stay at rest, unless a force causes its speed or direction to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion. It is one of the primary manifestations of mass, one of the core quantitative properties of physical systems. Newton writes:

LAW I. Every object perseveres in its state of rest, or of uniform motion in a right line, except insofar as it is compelled to change that state by forces impressed thereon.

Mechanics is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements, which are changes of an object's position relative to its environment.

Newton's laws of motion are three laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:

  1. A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force.
  2. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.
  3. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.

The following is a timeline of classical mechanics:

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

<span class="mw-page-title-main">Thomas Bradwardine</span> English cleric, mathematician and courtier (c.1300–1349)

Thomas Bradwardine was an English cleric, scholar, mathematician, physicist, courtier and, very briefly, Archbishop of Canterbury. As a celebrated scholastic philosopher and doctor of theology, he is often called Doctor Profundus.

<span class="mw-page-title-main">Nicole Oresme</span> French philosopher

Nicole Oresme, also known as Nicolas Oresme, Nicholas Oresme, or Nicolas d'Oresme, was a French philosopher of the later Middle Ages. He wrote influential works on economics, mathematics, physics, astrology, astronomy, philosophy, and theology; was Bishop of Lisieux, a translator, a counselor of King Charles V of France, and one of the most original thinkers of 14th-century Europe.

Albert of Saxony was a German philosopher and mathematician known for his contributions to logic and physics. He was bishop of Halberstadt from 1366 until his death.

In physics, mechanics is the study of objects, their interaction, and motion; classical mechanics is mechanics limited to non-relativistic and non-quantum approximations. Most of the techniques of classical mechanics were developed before 1900 so the term classical mechanics refers to that historical era as well as the approximations. Other fields of physics that were developed in the same era, that use the same approximations, and are also considered "classical" include thermodynamics and electromagnetism.

<span class="mw-page-title-main">History of gravitational theory</span>

In physics, theories of gravitation postulate mechanisms of interaction governing the movements of bodies with mass. There have been numerous theories of gravitation since ancient times. The first extant sources discussing such theories are found in ancient Greek philosophy. This work was furthered through the Middle Ages by Indian, Islamic, and European scientists, before gaining great strides during the Renaissance and Scientific Revolution—culminating in the formulation of Newton's law of gravity. This was superseded by Albert Einstein's theory of relativity in the early 20th century.

<span class="mw-page-title-main">William of Heytesbury</span>

William of Heytesbury, or William Heytesbury, called in Latin Guglielmus Hentisberus or Tisberus, was an English philosopher and logician, best known as one of the Oxford Calculators of Merton College, Oxford, where he was a fellow.

John of Dumbleton was a member of the Dumbleton village community in Gloucestershire, a southwestern county in England. Although obscure, he is considered a significant English fourteenth-century philosopher for his contributions to logic, natural philosophy, and physics. Dumbleton’s masterwork is his Summa Logicae et Philosophiae Naturalis, likely to have been composed just before the time of his death.

<span class="mw-page-title-main">Theory of impetus</span>

The theory of impetus is an auxiliary or secondary theory of Aristotelian dynamics, put forth initially to explain projectile motion against gravity. It was introduced by John Philoponus in the 6th century, and elaborated by Nur ad-Din al-Bitruji at the end of the 12th century. The theory was modified by Avicenna in the 11th century and Abu'l-Barakāt al-Baghdādī in the 12th century, before it was later established in Western scientific thought by Jean Buridan in the 14th century. It is the intellectual precursor to the concepts of inertia, momentum and acceleration in classical mechanics.

Gerard of Brussels was an early thirteenth-century geometer and philosopher known primarily for his Latin book Liber de motu, which was a pioneering study in kinematics, probably written between 1187 and 1260. It has been described as "the first Latin treatise that was to take the fundamental approach to kinematics that was to characterize modern kinematics." He brought the works of Euclid and Archimedes back into popularity and was a direct influence on the Oxford Calculators in the next century. Gerard is cited by Thomas Bradwardine in his Tractatus de proportionibus velocitatum (1328). His chief contribution was in moving away from Greek mathematics and closer to the notion of "a ratio of two unlike quantities such as distance and time", which is how modern physics defines velocity.

This is a list of articles in medieval philosophy.

<i>Gods Philosophers</i> 2009 book by James Hannam

God's Philosophers: How the Medieval World Laid the Foundations of Modern Science is a 2009 book written by British historian of science James Hannam.

<span class="mw-page-title-main">Mean speed theorem</span>

The mean speed theorem, also known as the Merton rule of uniform acceleration, was discovered in the 14th century by the Oxford Calculators of Merton College, and was proved by Nicole Oresme. It states that a uniformly accelerated body travels the same distance as a body with uniform speed whose speed is half the final velocity of the accelerated body.

<span class="mw-page-title-main">European science in the Middle Ages</span> Period of history of science

European science in the Middle Ages comprised the study of nature, mathematics and natural philosophy in medieval Europe. Following the fall of the Western Roman Empire and the decline in knowledge of Greek, Christian Western Europe was cut off from an important source of ancient learning. Although a range of Christian clerics and scholars from Isidore and Bede to Jean Buridan and Nicole Oresme maintained the spirit of rational inquiry, Western Europe would see a period of scientific decline during the Early Middle Ages. However, by the time of the High Middle Ages, the region had rallied and was on its way to once more taking the lead in scientific discovery. Scholarship and scientific discoveries of the Late Middle Ages laid the groundwork for the Scientific Revolution of the Early Modern Period.

Blasius of Parma was an Italian philosopher, mathematician and astrologer. He popularised English and French philosophical work in Italy, where he associated both with scholastics and with early Renaissance humanists.

References

Further reading