Timeline of atomic and subatomic physics

Last updated

A timeline of atomic and subatomic physics.

Contents

Antiquity

The beginning of chemistry

The age of quantum mechanics

Quantum field theory

The formation and successes of the Standard Model

See also

Related Research Articles

<span class="mw-page-title-main">Elementary particle</span> Subatomic particle having no known substructure

In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles.

<span class="mw-page-title-main">Fermion</span> Type of subatomic particle

In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin 1/2, spin 3/2, etc. These particles obey the Pauli exclusion principle. Fermions include all quarks and leptons and all composite particles made of an odd number of these, such as all baryons and many atoms and nuclei. Fermions differ from bosons, which obey Bose–Einstein statistics.

<span class="mw-page-title-main">Muon</span> Subatomic particle

A muon is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of 1/2, but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles; that is, it is a fundamental particle.

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

<span class="mw-page-title-main">Pauli exclusion principle</span> Quantum mechanics rule: identical fermions cannot occupy the same quantum state simultaneously

In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins cannot simultaneously occupy the same quantum state within a quantum system. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.

<span class="mw-page-title-main">Weak interaction</span> Interaction between subatomic particles and one of the four known fundamental interactions

In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, and gravitation. It is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms: The weak interaction participates in nuclear fission and nuclear fusion. The theory describing its behaviour and effects is sometimes called quantum flavourdynamics (QFD); however, the term QFD is rarely used, because the weak force is better understood by electroweak theory (EWT).

Degenerate matter occurs when the Pauli exclusion principle significantly alters a state of matter at low temperature. The term is used in astrophysics to refer to dense stellar objects such as white dwarfs and neutron stars, where thermal pressure alone is not enough to avoid gravitational collapse. The term also applies to metals in the Fermi gas approximation.

A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturbation theory of quantum field theory where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines.

<span class="mw-page-title-main">Subatomic particle</span> Particle smaller than an atom

In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles, or an elementary particle, which is not composed of other particles. Particle physics and nuclear physics study these particles and how they interact. Most force carrying particles like photons or gluons are called bosons and, although they have discrete quanta of energy, do not have rest mass or discrete diameters and are unlike the former particles that have rest mass and cannot overlap or combine which are called fermions.

<span class="mw-page-title-main">Annihilation</span> Collision of a particle and its antiparticle

In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy and momentum of the initial pair are conserved in the process and distributed among a set of other particles in the final state. Antiparticles have exactly opposite additive quantum numbers from particles, so the sums of all quantum numbers of such an original pair are zero. Hence, any set of particles may be produced whose total quantum numbers are also zero as long as conservation of energy, conservation of momentum, and conservation of spin are obeyed.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). The field theory behind QED was so accurate and successful in predictions that efforts were made to apply the same basic concepts for the other forces of nature. Beginning in 1954, the parallel was found by way of gauge theory, leading by the late 1970s, to quantum field models of strong nuclear force and weak nuclear force, united in the modern Standard Model of particle physics.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process. Multiple discovery sometimes occurs when multiple research groups discover the same phenomenon at about the same time, and scientific priority is often disputed. The listings below include some of the most significant people and ideas by date of publication or experiment.

The timeline of particle physics lists the sequence of particle physics theories and discoveries in chronological order. The most modern developments follow the scientific development of the discipline of particle physics.

<span class="mw-page-title-main">Boson</span> Type of subatomic particle

In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value. Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spin. Every observed subatomic particle is either a boson or a fermion.

The timeline of quantum mechanics is a list of key events in the history of quantum mechanics, quantum field theories and quantum chemistry.

<span class="mw-page-title-main">History of subatomic physics</span>

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

<span class="mw-page-title-main">Discovery of the neutron</span> Scientific background leading to the discovery of subatomic particles

The discovery of the neutron and its properties was central to the extraordinary developments in atomic physics in the first half of the 20th century. Early in the century, Ernest Rutherford developed a crude model of the atom, based on the gold foil experiment of Hans Geiger and Ernest Marsden. In this model, atoms had their mass and positive electric charge concentrated in a very small nucleus. By 1920, isotopes of chemical elements had been discovered, the atomic masses had been determined to be (approximately) integer multiples of the mass of the hydrogen atom, and the atomic number had been identified as the charge on the nucleus. Throughout the 1920s, the nucleus was viewed as composed of combinations of protons and electrons, the two elementary particles known at the time, but that model presented several experimental and theoretical contradictions.

References

  1. Teresi, Dick (2010). Lost Discoveries: The Ancient Roots of Modern Science. Simon and Schuster. pp. 213–214. ISBN   978-1-4391-2860-2.
  2. Jammer, Max (1966), The conceptual development of quantum mechanics, New York: McGraw-Hill, OCLC   534562
  3. Tivel, David E. (September 2012). Evolution: The Universe, Life, Cultures, Ethnicity, Religion, Science, and Technology. Dorrance Publishing. ISBN   9781434929747.
  4. Gilbert N. Lewis. Letter to the editor of Nature (Vol. 118, Part 2, December 18, 1926, pp. 874–875).
  5. The origin of the word "photon"
  6. The Davisson–Germer experiment, which demonstrates the wave nature of the electron
  7. A. Abragam and B. Bleaney. 1970. Electron Parmagnetic Resonance of Transition Ions, Oxford University Press: Oxford, U.K., p. 911
  8. Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter . Princeton University Press. ISBN   0-691-12575-9.
  9. Richard Feynman; QED. Princeton University Press: Princeton, (1982)
  10. Richard Feynman; Lecture Notes in Physics. Princeton University Press: Princeton, (1986)
  11. Feynman, R.P. (2001) [1964]. The Character of Physical Law . MIT Press. ISBN   0-262-56003-8.
  12. Feynman, R.P. (2006) [1985]. QED: The Strange Theory of Light and Matter . Princeton University Press. ISBN   0-691-12575-9.
  13. Schweber, Silvan S. ; Q.E.D. and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press (1994) ISBN   0-691-03327-7
  14. Schwinger, Julian ; Selected Papers on Quantum Electrodynamics, Dover Publications, Inc. (1958) ISBN   0-486-60444-6
  15. Yndurain, Francisco Jose ; Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons, Springer Verlag, New York, 1983. ISBN   0-387-11752-0
  16. 1 2 Frank Wilczek (1999) "Quantum field theory", Reviews of Modern Physics 71: S83–S95. Also doi=10.1103/Rev. Mod. Phys. 71.
  17. Weinberg, Steven ; The Quantum Theory of Fields: Foundations (vol. I), Cambridge University Press (1995) ISBN   0-521-55001-7. The first chapter (pp. 1–40) of Weinberg's monumental treatise gives a brief history of Q.F.T., pp. 608.
  18. Weinberg, Steven; The Quantum Theory of Fields: Modern Applications (vol. II), Cambridge University Press:Cambridge, U.K. (1996) ISBN   0-521-55001-7, pp. 489.
  19. Pais, Abraham ; Inward Bound: Of Matter & Forces in the Physical World, Oxford University Press (1986) ISBN   0-19-851997-4 Written by a former Einstein assistant at Princeton, this is a beautiful detailed history of modern fundamental physics, from 1895 (discovery of X-rays) to 1983 (discovery of vectors bosons at C.E.R.N.)
  20. "Press Release: The 1999 Nobel Prize in Chemistry". 12 October 1999. Retrieved 30 June 2013.