Superatom

Last updated

In chemistry, a superatom is any cluster of atoms that seem to exhibit some of the properties of elemental atoms. [1]

Contents

Sodium atoms, when cooled from vapor, naturally condense into clusters, preferentially containing a magic number of atoms (2, 8, 20, 40, 58, etc.), with the outermost electron of each atom entering an orbital encompassing all the atoms in the cluster. Superatoms tend to behave chemically in a way that will allow them to have a closed shell of electrons, in this new counting scheme.[ citation needed ]

Aluminum clusters

Certain aluminum clusters have superatom properties. These aluminium clusters are generated as anions (Al
n
with n = 1, 2, 3, … ) in helium gas and reacted with a gas containing iodine. When analyzed by mass spectrometry one main reaction product turns out to be Al
13
I
. [2] These clusters of 13 aluminium atoms with an extra electron added do not appear to react with oxygen when it is introduced in the same gas stream, indicating a halide-like character and a magic number of 40 free electrons. Such a cluster is known as a superhalogen. [3] [4] [5] [6] The cluster component in Al
13
I
ion is similar to an iodide ion or better still a bromide ion. The related Al
13
I
2
cluster is expected to behave chemically like the triiodide ion. [2]

Similarly it has been noted that Al
14
clusters with 42 electrons (2 more than the magic numbers) appear to exhibit the properties of an alkaline earth metal which typically adopt +2 valence states. This is only known to occur when there are at least 3 iodine atoms attached to an Al
14
cluster, Al
14
I
3
. The anionic cluster has a total of 43 itinerant electrons, but the three iodine atoms each remove one of the itinerant electrons to leave 40 electrons in the jellium shell. [7] [8]

It is particularly easy and reliable to study atomic clusters of inert gas atoms by computer simulation because interaction between two atoms can be approximated very well by the Lennard-Jones potential. Other methods are readily available and it has been established that the magic numbers are 13, 19, 23, 26, 29, 32, 34, 43, 46, 49, 55, etc. [9]

Other clusters

Superatom complexes

Superatom complexes are a special group of superatoms that incorporate a metal core which is stabilized by organic ligands. In thiolate-protected gold cluster complexes a simple electron counting rule can be used to determine the total number of electrons (ne) which correspond to a magic number via,

where N is the number of metal atoms (A) in the core, v is the atomic valence, M is the number of electron withdrawing ligands, and z is the overall charge on the complex. [19] For example the Au102(p-MBA)44 has 58 electrons and corresponds to a closed shell magic number. [20]

Gold superatom complexes

Other superatom complexes

See also

Related Research Articles

<span class="mw-page-title-main">Halogen</span> Group of chemical elements

The halogens are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17.

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

<span class="mw-page-title-main">Excited state</span> Quantum states with more energy than the lowest possible amount

In quantum mechanics, an excited state of a system is any quantum state of the system that has a higher energy than the ground state. Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation.

<span class="mw-page-title-main">Catenation</span> Bonding of atoms of the same element into chains or rings

In chemistry, catenation is the bonding of atoms of the same element into a series, called a chain. A chain or a ring shape may be open if its ends are not bonded to each other, or closed if they are bonded in a ring. The words to catenate and catenation reflect the Latin root catena, "chain".

<span class="mw-page-title-main">Photosensitizer</span> Type of molecule reacting to light

Photosensitizers are light absorbers that alter the course of a photochemical reaction. They usually are catalysts. They can function by many mechanisms, sometimes they donate an electron to the substrate, sometimes they abstract a hydrogen atom from the substrate. At the end of this process, the photosensitizer returns to its ground state, where it remains chemically intact, poised to absorb more light. One branch of chemistry which frequently utilizes photosensitizers is polymer chemistry, using photosensitizers in reactions such as photopolymerization, photocrosslinking, and photodegradation. Photosensitizers are also used to generate prolonged excited electronic states in organic molecules with uses in photocatalysis, photon upconversion and photodynamic therapy. Generally, photosensitizers absorb electromagnetic radiation consisting of infrared radiation, visible light radiation, and ultraviolet radiation and transfer absorbed energy into neighboring molecules. This absorption of light is made possible by photosensitizers' large de-localized π-systems, which lowers the energy of HOMO and LUMO orbitals to promote photoexcitation. While many photosensitizers are organic or organometallic compounds, there are also examples of using semiconductor quantum dots as photosensitizers.

<span class="mw-page-title-main">Electride</span> Ionic compound with electrons as the anion

An electride is an ionic compound in which an electron serves the role of the anion. Solutions of alkali metals in ammonia are electride salts. In the case of sodium, these blue solutions consist of [Na(NH3)6]+ and solvated electrons:

<span class="mw-page-title-main">Metal nitrosyl complex</span> Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

In chemistry, a Zintl phase is a product of a reaction between a group 1 or group 2 and main group metal or metalloid. It is characterized by intermediate metallic/ionic bonding. Zintl phases are a subgroup of brittle, high-melting intermetallic compounds that are diamagnetic or exhibit temperature-independent paramagnetism and are poor conductors or semiconductors.

Lithium superoxide is an unstable inorganic salt with formula LiO2. A radical compound, it can be produced at low temperature in matrix isolation experiments, or in certain nonpolar, non-protic solvents. Lithium superoxide is also a transient species during the reduction of oxygen in a lithium–air galvanic cell, and serves as a main constraint on possible solvents for such a battery. For this reason, it has been investigated thoroughly using a variety of methods, both theoretical and spectroscopic.

In chemistry, a (redox) non-innocent ligand is a ligand in a metal complex where the oxidation state is not clear. Typically, complexes containing non-innocent ligands are redox active at mild potentials. The concept assumes that redox reactions in metal complexes are either metal or ligand localized, which is a simplification, albeit a useful one.

<span class="mw-page-title-main">Transition metal dinitrogen complex</span> Coordination compounds with N2

Transition metal dinitrogen complexes are coordination compounds that contain transition metals as ion centers the dinitrogen molecules (N2) as ligands.

In enzymology, carbon monoxide dehydrogenase (CODH) (EC 1.2.7.4) is an enzyme that catalyzes the chemical reaction

A stannide can refer to an intermetallic compound containing tin combined with one or more other metals; an anion consisting solely of tin atoms or a compound containing such an anion, or, in the field of organometallic chemistry an ionic compound containing an organotin anion

John Dudley Corbett was an American chemist who specialized in inorganic solid-state chemistry. At Iowa State and Ames Lab, Corbett lead a research group that focused on the synthesis and characterization of two broad classes of materials, notably Zintl phases and condensed transition metal halide clusters. Both classes of materials are important for their uses, for instance thermoelectrics, and for the theoretical advances they made possible by working to understand their complex bonding and electronic properties.

<span class="mw-page-title-main">Nanocluster</span> Collection of bound atoms or molecules ≤3 nm in diameter

Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials. These nanoclusters can be composed either of a single or of multiple elements, and exhibit interesting electronic, optical, and chemical properties compared to their larger counterparts.

In chemistry, a chalcogen bond (ChB) is an attractive interaction in the family of σ-hole interactions, along with halogen bonds. Electrostatic, charge-transfer (CT) and dispersion terms have been identified as contributing to this type of interaction. In terms of CT contribution, this family of attractive interactions has been modeled as an electron donor ) interacting with the σ* orbital of a C-X bond of the bond donor. In terms of electrostatic interactions, the molecular electrostatic potential (MEP) maps is often invoked to visualize the electron density of the donor and an electrophilic region on the acceptor, where the potential is depleted, referred to as a σ-hole. ChBs, much like hydrogen and halogen bonds, have been invoked in various non-covalent interactions, such as protein folding, crystal engineering, self-assembly, catalysis, transport, sensing, templation, and drug design.

Susan M. Kauzlarich is an American chemist and is presently a distinguished professor of chemistry at the University of California, Davis. At UC Davis, Kauzlarich leads a research group focused on the synthesis and characterization of Zintl phases and nanoclusters with applications in the fields of thermoelectric materials, magnetic resonance imaging, energy storage, opto-electronics, and drug delivery. Kauzlarich has published over 250 peer-reviewed publications and has been awarded several patents. In 2009, Kauzlarich received the annual Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring, which is administered by the National Science Foundation to acknowledge faculty members who raise the membership of minorities, women and disabled students in the science and engineering fields. In January 2022 she became Deputy Editor for the scientific journal, Science Advances. She gave the Edward Herbert Boomer Memorial Lecture of the University of Alberta in 2023.

<span class="mw-page-title-main">Metal cluster compound</span> Cluster of three or more metals

Metal cluster compounds are a molecular ion or neutral compound composed of three or more metals and featuring significant metal-metal interactions.

<span class="mw-page-title-main">Alkaline earth octacarbonyl complex</span> Class of chemical compounds

Alkaline earth octacarbonyl complexes are a class of neutral compounds that have the general formula M(CO)8 where M is a heavy Group 2 element (Ca, Sr, or Ba). The metal center has a formal oxidation state of 0 and the complex has a high level of symmetry belonging to the cubic Oh point group. These complexes are isolable in a low-temperature neon matrix, but are not frequently used in applications due to their instability in air and water. The bonding within these complexes is controversial with some arguing the bonding resembles a model similar to bonding in transition metal carbonyl complexes which abide by the 18-electron rule, and others arguing the molecule more accurately contains ionic bonds between the alkaline earth metal center and the carbonyl ligands. Complexes of Be(CO)8 and Mg(CO)8 are not synthetically possible due to inaccessible (n-1)d orbitals. Beryllium has been found to form a dinuclear homoleptic carbonyl and magnesium a mononuclear heteroleptic carbonyl, both with only two carbonyl ligands instead of eight to each metal atom.

<span class="mw-page-title-main">Alexander Boldyrev</span> Russian-American scientist

Alexander I. Boldyrev was a Russian-American computational chemist and R. Gaurth Hansen Professor at Utah State University. Professor Boldyrev is known for his pioneering works on superhalogens, superalkalis, tetracoordinated planar carbon, inorganic double helix, boron and aluminum clusters, and chemical bonding theory, especially aromaticity/antiaromaticity in all-metal structures, and development of the Adaptive Natural Density Partitioning (AdNDP) method.

References

  1. Ariyarathna, Isuru R. (21 December 2021). "Superatomic Chelates: The Cases of Metal Aza-Crown Ethers and Cryptands". Inorganic Chemistry. 61 (1): 579–585. doi:10.1021/acs.inorgchem.1c03261.
  2. 1 2 Bergeron, D. E. (2 April 2004). "Formation of Al
    13
    I
    : Evidence for the Superhalogen Character of Al13". Science . American Association for the Advancement of Science (AAAS). 304 (5667): 84–87. doi:10.1126/science.1093902. ISSN   0036-8075. PMID   15066775. S2CID   26728239.
  3. Reddy, G. Naaresh; Parida, Rakesh; Giri, Santanab (2017-12-12). "Functionalized deltahedral Zintl complexes Ge9R3 (R = CF3, CN, and NO2): a new class of superhalogens". Chemical Communications. 53 (99): 13229–13232. doi:10.1039/C7CC08120K. ISSN   1364-548X. PMID   29182179.
  4. Giri, Santanab; Child, Brandon Z.; Jena, Puru (2014). "Organic Superhalogens". ChemPhysChem. 15 (14): 2903–2908. doi:10.1002/cphc.201402472. ISSN   1439-7641. PMID   25056518.
  5. Reddy, Gorre Naaresh; Giri, Santanab (2016-05-10). "Super/hyperhalogen aromatic heterocyclic compounds". RSC Advances. 6 (52): 47145–47150. Bibcode:2016RSCAd...647145R. doi:10.1039/C6RA08625J. ISSN   2046-2069.
  6. Sinha, Swapan; Jena, Puru; Giri, Santanab (2022-08-12). "Functionalized nona-silicide [Si9R3] Zintl clusters: a new class of superhalogens". Physical Chemistry Chemical Physics. 24 (35): 21105–21111. Bibcode:2022PCCP...2421105S. doi:10.1039/D2CP02619H. ISSN   1463-9084. PMID   36018293. S2CID   251551751.
  7. Philip Ball, "A New Kind of Alchemy", New Scientist Issue dated 2005-04-16.
  8. Bergeron, D. E. (14 January 2005). "Al Cluster Superatoms as Halogens in Polyhalides and as Alkaline Earths in Iodide Salts". Science . American Association for the Advancement of Science (AAAS). 307 (5707): 231–235. Bibcode:2005Sci...307..231B. doi:10.1126/science.1105820. ISSN   0036-8075. PMID   15653497. S2CID   8003390.
  9. Harris, I. A.; Kidwell, R. S.; Northby, J. A. (17 December 1984). "Structure of Charged Argon Clusters Formed in a Free Jet Expansion". Physical Review Letters. American Physical Society (APS). 53 (25): 2390–2393. Bibcode:1984PhRvL..53.2390H. doi:10.1103/physrevlett.53.2390. ISSN   0031-9007. S2CID   13793440.
  10. 1 2 Naiche Owen Jones, 2006. [ permanent dead link ]
  11. Das, Ujjal; Raghavachari, Krishnan (2008). "Al5O4 Superatom with Potential for New Materials Design". Journal of Chemical Theory and Computation. 4 (12): 2011–2019. doi:10.1021/ct800232b. PMID   26620474.
  12. Sun, Xiao-Ying; Li, Zhi-Ru; Wu, Di; Sun, Chia-Chung (2007). "Extraordinary superatom containing double shell nucleus: Li(HF)3Li connected mainly by intermolecular interactions". International Journal of Quantum Chemistry. Wiley. 107 (5): 1215–1222. Bibcode:2007IJQC..107.1215S. doi:10.1002/qua.21246. ISSN   0020-7608.
  13. Ariyarathna, Isuru R.; Pawłowski, Filip; Ortiz, Joseph Vincent; Miliordos, Evangelos (2018). "Molecules mimicking atoms: monomers and dimers of alkali metal solvated electron precursors". Physical Chemistry Chemical Physics. 20 (37): 24186–24191. Bibcode:2018PCCP...2024186A. doi:10.1039/C8CP05497E. ISSN   1463-9076. PMID   30209476.
  14. 1 2 Ariyarathna, Isuru (2021-03-01). First Principle Studies on Ground and Excited Electronic States: Chemical Bonding in Main-Group Molecules, Molecular Systems with Diffuse Electrons, and Water Activation using Transition Metal Monoxides (PhD thesis).
  15. Ariyarathna, Isuru R.; Khan, Shahriar N.; Pawłowski, Filip; Ortiz, Joseph Vincent; Miliordos, Evangelos (2018-01-04). "Aufbau Rules for Solvated Electron Precursors: Be(NH 3 ) 4 2+ Complexes and Beyond". The Journal of Physical Chemistry Letters. 9 (1): 84–88. doi: 10.1021/acs.jpclett.7b03000 . ISSN   1948-7185. PMID   29232138.
  16. Koyasu, Kiichirou; Atobe, Junko; Akutsu, Minoru; Mitsui, Masaaki; Nakajima, Atsushi (2007). "Electronic and Geometric Stabilities of Clusters with Transition Metal Encapsulated by Silicon". The Journal of Physical Chemistry A. American Chemical Society (ACS). 111 (1): 42–49. Bibcode:2007JPCA..111...42K. doi:10.1021/jp066757f. ISSN   1089-5639. PMID   17201386.
  17. Platinum nanoclusters go magnetic Archived 2007-10-15 at the Wayback Machine , nanotechweb.org, 2007
  18. Ultra Cold Trap Yields Superatom, NIST, 1995
  19. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Gronbeck, H.; Hakkinen, H. (1 June 2008). "A unified view of ligand-protected gold clusters as superatom complexes". Proceedings of the National Academy of Sciences. 105 (27): 9157–9162. Bibcode:2008PNAS..105.9157W. doi: 10.1073/pnas.0801001105 . ISSN   0027-8424. PMC   2442568 . PMID   18599443.
  20. Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. (19 October 2007). "Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution". Science. American Association for the Advancement of Science (AAAS). 318 (5849): 430–433. Bibcode:2007Sci...318..430J. doi:10.1126/science.1148624. ISSN   0036-8075. PMID   17947577. S2CID   1566019.
  21. Akola, Jaakko; Walter, Michael; Whetten, Robert L.; Häkkinen, Hannu; Grönbeck, Henrik (2008). "On the Structure of Thiolate-Protected Au25". Journal of the American Chemical Society. American Chemical Society (ACS). 130 (12): 3756–3757. doi:10.1021/ja800594p. ISSN   0002-7863. PMID   18321117.
  22. Lopez-Acevedo, Olga; Akola, Jaakko; Whetten, Robert L.; Grönbeck, Henrik; Häkkinen, Hannu (16 January 2009). "Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60". The Journal of Physical Chemistry C. American Chemical Society (ACS). 113 (13): 5035–5038. doi:10.1021/jp8115098. ISSN   1932-7447.
  23. Hartig, Jens; Stößer, Anna; Hauser, Petra; Schnöckel, Hansgeorg (26 February 2007). "A Metalloid Ga23{N(SiMe3)2}11 Cluster: The Jellium Model Put to Test". Angewandte Chemie International Edition. Wiley. 46 (10): 1658–1662. doi:10.1002/anie.200604311. ISSN   1433-7851. PMID   17230594.
  24. Clayborne, Peneé A.; Lopez-Acevedo, Olga; Whetten, Robert L.; Grönbeck, Henrik; Häkkinen, Hannu (13 May 2011). "The Al50Cp*12 Cluster – A 138-Electron Closed Shell (L = 6) Superatom". European Journal of Inorganic Chemistry. Wiley. 2011 (17): 2649–2652. doi:10.1002/ejic.201100374. ISSN   1434-1948.
  25. Zyga, Lisa. "Researchers create first superatomic 2-D semiconductor". Phys.org. Retrieved 2018-02-18.
  26. Reddy, G. Naaresh; Jena, Puru; Giri, Santanab (2017-10-16). "Organo−Zintl-based superatoms: [Ge9(CHO)3] and [Ge9(CHO)]". Chemical Physics Letters. 686: 195–202. Bibcode:2017CPL...686..195R. doi: 10.1016/j.cplett.2017.08.056 . ISSN   0009-2614.