Jellium

Last updated • 8 min readFrom Wikipedia, The Free Encyclopedia

Jellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting electrons in a solid where the positive charges (i.e. atomic nuclei) are assumed to be uniformly distributed in space; the electron density is a uniform quantity as well in space. This model allows one to focus on the effects in solids that occur due to the quantum nature of electrons and their mutual repulsive interactions (due to like charge) without explicit introduction of the atomic lattice and structure making up a real material. Jellium is often used in solid-state physics as a simple model of delocalized electrons in a metal, where it can qualitatively reproduce features of real metals such as screening, plasmons, Wigner crystallization and Friedel oscillations.

Contents

At zero temperature, the properties of jellium depend solely upon the constant electronic density. This property lends it to a treatment within density functional theory; the formalism itself provides the basis for the local-density approximation to the exchange-correlation energy density functional.

The term jellium was coined by Conyers Herring in 1952, alluding to the "positive jelly" background, and the typical metallic behavior it displays. [1]

Hamiltonian

The jellium model treats the electron-electron coupling rigorously. The artificial and structureless background charge interacts electrostatically with itself and the electrons. The jellium Hamiltonian for N electrons confined within a volume of space Ω, and with electronic density ρ(r) and (constant) background charge density n(R) = N/Ω is [2] [3]

where

Hback is a constant and, in the limit of an infinite volume, divergent along with Hel-back. The divergence is canceled by a term from the electron-electron coupling: the background interactions cancel and the system is dominated by the kinetic energy and coupling of the electrons. Such analysis is done in Fourier space; the interaction terms of the Hamiltonian which remain correspond to the Fourier expansion of the electron coupling for which q  0.

Contributions to the total energy

The traditional way to study the electron gas is to start with non-interacting electrons which are governed only by the kinetic energy part of the Hamiltonian, also called a Fermi gas. The kinetic energy per electron is given by

where is the Fermi energy, is the Fermi wave vector, and the last expression shows the dependence on the Wigner–Seitz radius where energy is measured in rydbergs. is the Bohr radius. In what follows is the normalized value

Without doing much work, one can guess that the electron-electron interactions will scale like the inverse of the average electron-electron separation and hence as (since the Coulomb interaction goes like one over distance between charges) so that if we view the interactions as a small correction to the kinetic energy, we are describing the limit of small (i.e. being larger than ) and hence high electron density. Unfortunately, real metals typically have between 2-5 which means this picture needs serious revision.

The first correction to the free electron model for jellium is from the Fock exchange contribution to electron-electron interactions. Adding this in, one has a total energy of

where the negative term is due to exchange: exchange interactions lower the total energy. Higher order corrections to the total energy are due to electron correlation and if one decides to work in a series for small , one finds

The series is quite accurate for small but of dubious value for values found in actual metals.

For the full range of , Chachiyo's correlation energy density can be used as the higher order correction. In this case,

, [4] which agrees quite well (on the order of milli-Hartree) with the quantum Monte Carlo simulation.

Zero-temperature phase diagram of jellium in three and two dimensions

The physics of the zero-temperature phase behavior of jellium is driven by competition between the kinetic energy of the electrons and the electron-electron interaction energy. The kinetic-energy operator in the Hamiltonian scales as , where is the Wigner–Seitz radius, whereas the interaction energy operator scales as . Hence the kinetic energy dominates at high density (small ), while the interaction energy dominates at low density (large ).

The limit of high density is where jellium most resembles a noninteracting free electron gas. To minimize the kinetic energy, the single-electron states are delocalized, in a state very close to the Slater determinant (non-interacting state) constructed from plane waves. Here the lowest-momentum plane-wave states are doubly occupied by spin-up and spin-down electrons, giving a paramagnetic Fermi fluid.

At lower densities, where the interaction energy is more important, it is energetically advantageous for the electron gas to spin-polarize (i.e., to have an imbalance in the number of spin-up and spin-down electrons), resulting in a ferromagnetic Fermi fluid. This phenomenon is known as itinerant ferromagnetism. At sufficiently low density, the kinetic-energy penalty resulting from the need to occupy higher-momentum plane-wave states is more than offset by the reduction in the interaction energy due to the fact that exchange effects keep indistinguishable electrons away from one another.

A further reduction in the interaction energy (at the expense of kinetic energy) can be achieved by localizing the electron orbitals. As a result, jellium at zero temperature at a sufficiently low density will form a so-called Wigner crystal, in which the single-particle orbitals are of approximately Gaussian form centered on crystal lattice sites. Once a Wigner crystal has formed, there may in principle be further phase transitions between different crystal structures and between different magnetic states for the Wigner crystals (e.g., antiferromagnetic to ferromagnetic spin configurations) as the density is lowered. When Wigner crystallization occurs, jellium acquires a band gap.

Within Hartree–Fock theory, the ferromagnetic fluid abruptly becomes more stable than the paramagnetic fluid at a density parameter of in three dimensions (3D) and in two dimensions (2D). [5] However, according to Hartree–Fock theory, Wigner crystallization occurs at in 3D and in 2D, so that jellium would crystallise before itinerant ferromagnetism occurs. [6] Furthermore, Hartree–Fock theory predicts exotic magnetic behavior, with the paramagnetic fluid being unstable to the formation of a spiral spin-density wave. [7] [8] Unfortunately, Hartree–Fock theory does not include any description of correlation effects, which are energetically important at all but the very highest densities, and so a more accurate level of theory is required to make quantitative statements about the phase diagram of jellium.

Quantum Monte Carlo (QMC) methods, which provide an explicit treatment of electron correlation effects, are generally agreed to provide the most accurate quantitative approach for determining the zero-temperature phase diagram of jellium. The first application of the diffusion Monte Carlo method was Ceperley and Alder's famous 1980 calculation of the zero-temperature phase diagram of 3D jellium. [9] They calculated the paramagnetic-ferromagnetic fluid transition to occur at and Wigner crystallization (to a body-centered cubic crystal) to occur at . Subsequent QMC calculations [10] [11] have refined their phase diagram: there is a second-order transition from a paramagnetic fluid state to a partially spin-polarized fluid from to about ; and Wigner crystallization occurs at .

In 2D, QMC calculations indicate that the paramagnetic fluid to ferromagnetic fluid transition and Wigner crystallization occur at similar density parameters, in the range . [12] [13] The most recent QMC calculations indicate that there is no region of stability for a ferromagnetic fluid. [14] Instead there is a transition from a paramagnetic fluid to a hexagonal Wigner crystal at . There is possibly a small region of stability for a (frustrated) antiferromagnetic Wigner crystal, before a further transition to a ferromagnetic crystal. The crystallization transition in 2D is not first order, so there must be a continuous series of transitions from fluid to crystal, perhaps involving striped crystal/fluid phases. [15] Experimental results for a 2D hole gas in a GaAs/AlGaAs heterostructure (which, despite being clean, may not correspond exactly to the idealized jellium model) indicate a Wigner crystallization density of . [16]

Applications

Jellium is the simplest model of interacting electrons. It is employed in the calculation of properties of metals, where the core electrons and the nuclei are modeled as the uniform positive background and the valence electrons are treated with full rigor. Semi-infinite jellium slabs are used to investigate surface properties such as work function and surface effects such as adsorption; near surfaces the electronic density varies in an oscillatory manner, decaying to a constant value in the bulk. [17] [18] [19]

Within density functional theory, jellium is used in the construction of the local-density approximation, which in turn is a component of more sophisticated exchange-correlation energy functionals. From quantum Monte Carlo calculations of jellium, accurate values of the correlation energy density have been obtained for several values of the electronic density, [9] which have been used to construct semi-empirical correlation functionals. [20]

The jellium model has been applied to superatoms, metal clusters, octacarbonyl complexes, and used in nuclear physics.

See also

Related Research Articles

The quantum Hall effect is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules, electrons, positrons, protons, antiprotons and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function. In the case of DFT, these are functionals of the spatially dependent electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

Quantum turbulence is the name given to the turbulent flow – the chaotic motion of a fluid at high flow rates – of quantum fluids, such as superfluids. The idea that a form of turbulence might be possible in a superfluid via the quantized vortex lines was first suggested by Richard Feynman. The dynamics of quantum fluids are governed by quantum mechanics, rather than classical physics which govern classical (ordinary) fluids. Some examples of quantum fluids include superfluid helium, Bose–Einstein condensates (BECs), polariton condensates, and nuclear pasta theorized to exist inside neutron stars. Quantum fluids exist at temperatures below the critical temperature at which Bose-Einstein condensation takes place.

<span class="mw-page-title-main">Density of states</span> Number of available physical states per energy unit

In condensed matter physics, the density of states (DOS) of a system describes the number of allowed modes or states per unit energy range. The density of states is defined as , where is the number of states in the system of volume whose energies lie in the range from to . It is mathematically represented as a distribution by a probability density function, and it is generally an average over the space and time domains of the various states occupied by the system. The density of states is directly related to the dispersion relations of the properties of the system. High DOS at a specific energy level means that many states are available for occupation.

<span class="mw-page-title-main">Polaron</span> Quasiparticle in condensed matter physics

A polaron is a quasiparticle used in condensed matter physics to understand the interactions between electrons and atoms in a solid material. The polaron concept was proposed by Lev Landau in 1933 and Solomon Pekar in 1946 to describe an electron moving in a dielectric crystal where the atoms displace from their equilibrium positions to effectively screen the charge of an electron, known as a phonon cloud. This lowers the electron mobility and increases the electron's effective mass.

<span class="mw-page-title-main">Tunnel magnetoresistance</span> Magnetic effect in insulators between ferromagnets

Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough, electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon, and lies in the study of spintronics.

In physics, charge conservation is the principle that the total electric charge in an isolated system never changes. The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved. Charge conservation, considered as a physical conservation law, implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the volume minus the amount of charge flowing out of the volume. In essence, charge conservation is an accounting relationship between the amount of charge in a region and the flow of charge into and out of that region, given by a continuity equation between charge density and current density .

Local-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space. Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model. In this regard, LDA is generally synonymous with functionals based on the HEG approximation, which are then applied to realistic systems.

<span class="mw-page-title-main">Wigner crystal</span> Solid (crystalline) phase of electrons

A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934. A gas of electrons moving in a uniform, inert, neutralizing background will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed. A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. However, it is still not clear whether it is the Wigner crystallization that has led to observation of insulating behaviour in magnetotransport measurements on 2D electron systems, since other candidates are present, such as Anderson localization.

The Thomas–Fermi (TF) model, named after Llewellyn Thomas and Enrico Fermi, is a quantum mechanical theory for the electronic structure of many-body systems developed semiclassically shortly after the introduction of the Schrödinger equation. It stands separate from wave function theory as being formulated in terms of the electronic density alone and as such is viewed as a precursor to modern density functional theory. The Thomas–Fermi model is correct only in the limit of an infinite nuclear charge. Using the approximation for realistic systems yields poor quantitative predictions, even failing to reproduce some general features of the density such as shell structure in atoms and Friedel oscillations in solids. It has, however, found modern applications in many fields through the ability to extract qualitative trends analytically and with the ease at which the model can be solved. The kinetic energy expression of Thomas–Fermi theory is also used as a component in more sophisticated density approximation to the kinetic energy within modern orbital-free density functional theory.

In quantum mechanics, orbital magnetization, Morb, refers to the magnetization induced by orbital motion of charged particles, usually electrons in solids. The term "orbital" distinguishes it from the contribution of spin degrees of freedom, Mspin, to the total magnetization. A nonzero orbital magnetization requires broken time-reversal symmetry, which can occur spontaneously in ferromagnetic and ferrimagnetic materials, or can be induced in a non-magnetic material by an applied magnetic field.

<span class="mw-page-title-main">Antisymmetric exchange</span> Contribution to magnetic exchange interaction

In Physics, antisymmetric exchange, also known as the Dzyaloshinskii–Moriya interaction (DMI), is a contribution to the total magnetic exchange interaction between two neighboring magnetic spins, and . Quantitatively, it is a term in the Hamiltonian which can be written as

The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations. The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution and operator multiplication is replaced by a star product.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

<span class="mw-page-title-main">Superradiant phase transition</span> Process in quantum optics

In quantum optics, a superradiant phase transition is a phase transition that occurs in a collection of fluorescent emitters, between a state containing few electromagnetic excitations and a superradiant state with many electromagnetic excitations trapped inside the emitters. The superradiant state is made thermodynamically favorable by having strong, coherent interactions between the emitters.

Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.

<span class="mw-page-title-main">Phonovoltaic</span>

A phonovoltaic (pV) cell converts vibrational (phonons) energy into a direct current much like the photovoltaic effect in a photovoltaic (PV) cell converts light (photon) into power. That is, it uses a p-n junction to separate the electrons and holes generated as valence electrons absorb optical phonons more energetic than the band gap, and then collects them in the metallic contacts for use in a circuit. The pV cell is an application of heat transfer physics and competes with other thermal energy harvesting devices like the thermoelectric generator.

The term Dirac matter refers to a class of condensed matter systems which can be effectively described by the Dirac equation. Even though the Dirac equation itself was formulated for fermions, the quasi-particles present within Dirac matter can be of any statistics. As a consequence, Dirac matter can be distinguished in fermionic, bosonic or anyonic Dirac matter. Prominent examples of Dirac matter are graphene and other Dirac semimetals, topological insulators, Weyl semimetals, various high-temperature superconductors with -wave pairing and liquid helium-3. The effective theory of such systems is classified by a specific choice of the Dirac mass, the Dirac velocity, the gamma matrices and the space-time curvature. The universal treatment of the class of Dirac matter in terms of an effective theory leads to a common features with respect to the density of states, the heat capacity and impurity scattering.

References

  1. Hughes, R. I. G. (2006). "Theoretical Practice: the Bohm-Pines Quartet" (PDF). Perspectives on Science. 14 (4): 457–524. doi:10.1162/posc.2006.14.4.457. S2CID   57569991.
  2. Gross, E. K. U.; Runge, E.; Heinonen, O. (1991). Many-Particle Theory. Bristol: Verlag Adam Hilger. pp. 79–80. ISBN   978-0-7503-0155-8.
  3. Giuliani, Gabriele; Vignale; Giovanni (2005). Quantum Theory of the Electron Liquid . Cambridge University Press. pp.  13–16. ISBN   978-0-521-82112-4.
  4. Teepanis Chachiyo (2016). "Simple and accurate uniform electron gas correlation energy for the full range of densities". J. Chem. Phys. 145 (2): 021101. Bibcode:2016JChPh.145b1101C. doi: 10.1063/1.4958669 . PMID   27421388.
  5. Giuliani, Gabriele; Vignale; Giovanni (2005). Quantum Theory of the Electron Liquid . Cambridge University Press. ISBN   978-0-521-82112-4.
  6. J. R. Trail; M. D. Towler; R. J. Needs (2003). "Unrestricted Hartree-Fock theory of Wigner crystals". Phys. Rev. B. 68 (4): 045107. arXiv: 0909.5498 . Bibcode:2003PhRvB..68d5107T. doi:10.1103/PhysRevB.68.045107. S2CID   8932393.
  7. A. W. Overhauser (1960). "Giant Spin Density Waves". Phys. Rev. Lett. 4 (9): 462–465. Bibcode:1960PhRvL...4..462O. doi:10.1103/PhysRevLett.4.462.
  8. A. W. Overhauser (1962). "Spin Density Waves in an Electron Gas". Phys. Rev. 128 (3): 1437–1452. Bibcode:1962PhRv..128.1437O. doi:10.1103/PhysRev.128.1437.
  9. 1 2 D. M. Ceperley; B. J. Alder (1980). "Ground State of the Electron Gas by a Stochastic Method". Phys. Rev. Lett. (Submitted manuscript). 45 (7): 566–569. Bibcode:1980PhRvL..45..566C. doi:10.1103/PhysRevLett.45.566. S2CID   55620379.
  10. F. H. Zong; C. Lin; D. M. Ceperley (2002). "Spin polarization of the low-density three-dimensional electron gas". Phys. Rev. E. 66 (3): 1–7. arXiv: cond-mat/0205339 . Bibcode:2002PhRvE..66c6703Z. doi:10.1103/PhysRevE.66.036703. PMID   12366294. S2CID   11606173.
  11. N. D. Drummond; Z. Radnai; J. R. Trail; M. D. Towler; R. J. Needs (2004). "Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals". Phys. Rev. B. 69 (8): 085116. arXiv: 0801.0377 . Bibcode:2004PhRvB..69h5116D. doi:10.1103/PhysRevB.69.085116. S2CID   18176116.
  12. B. Tanatar; D. M. Ceperley (1989). "Ground state of the two-dimensional electron gas". Phys. Rev. B. 39 (8): 5005–5016. Bibcode:1989PhRvB..39.5005T. doi:10.1103/PhysRevB.39.5005. PMID   9948889.
  13. F. Rapisarda; G. Senatore (1996). "Diffusion Monte Carlo Study of Electrons in Two-dimensional Layers". Aust. J. Phys. 49: 161. Bibcode:1996AuJPh..49..161R. doi: 10.1071/PH960161 .
  14. N. D. Drummond; R. J. Needs (2009). "Phase Diagram of the Low-Density Two-Dimensional Homogeneous Electron Gas". Phys. Rev. Lett. 102 (12): 126402. arXiv: 1002.2101 . Bibcode:2009PhRvL.102l6402D. doi:10.1103/PhysRevLett.102.126402. PMID   19392300. S2CID   35125378.
  15. B. Spivak; S. A. Kivelson (2004). "Phases intermediate between a two-dimensional electron liquid and Wigner crystal". Phys. Rev. B. 70 (15): 155114. Bibcode:2004PhRvB..70o5114S. doi:10.1103/PhysRevB.70.155114.
  16. J. Yoon; C. C. Li; D. Shahar; D. C. Tsui; M. Shayegan (1999). "Wigner Crystallization and Metal-Insulator Transition of Two-Dimensional Holes in GaAs at ". Phys. Rev. Lett. 82 (8): 1744. arXiv: cond-mat/9807235 . Bibcode:1999PhRvL..82.1744Y. doi:10.1103/PhysRevLett.82.1744. S2CID   119371913.
  17. Lang, N. D. (1969). "Self-consistent properties of the electron distribution at a metal surface". Solid State Commun. 7 (15): 1047–1050. Bibcode:1969SSCom...7.1047L. doi:10.1016/0038-1098(69)90467-0.
  18. Lang, N. D.; Kohn, W. (1970). "Theory of Metal Surfaces: Work Function". Phys. Rev. B. 3 (4): 1215–223. Bibcode:1971PhRvB...3.1215L. doi:10.1103/PhysRevB.3.1215.
  19. Lang, N. D.; Kohn, W. (1973). "Surface-Dipole Barriers in Simple Metals". Phys. Rev. B. 8 (12): 6010–6012. Bibcode:1973PhRvB...8.6010L. doi:10.1103/PhysRevB.8.6010.
  20. Perdew, J. P.; McMullen, E. R.; Zunger, Alex (1981). "Density-functional theory of the correlation energy in atoms and ions: A simple analytic model and a challenge". Phys. Rev. A. 23 (6): 2785–2789. Bibcode:1981PhRvA..23.2785P. doi:10.1103/PhysRevA.23.2785.