Virtual particle

Last updated

A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle, which allows the virtual particles to spontaneously emerge from vacuum at short time and space ranges. [1] The concept of virtual particles arises in the perturbation theory of quantum field theory (QFT) where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines. [2] [3]

Contents

Virtual particles do not necessarily carry the same mass as the corresponding ordinary particle, although they always conserve energy and momentum. The closer its characteristics come to those of ordinary particles, the longer the virtual particle exists. They are important in the physics of many processes, including particle scattering and Casimir forces. In quantum field theory, forces—such as the electromagnetic repulsion or attraction between two charges—can be thought of as resulting from the exchange of virtual photons between the charges. Virtual photons are the exchange particles for the electromagnetic interaction.

The term is somewhat loose and vaguely defined, in that it refers to the view that the world is made up of "real particles". "Real particles" are better understood to be excitations of the underlying quantum fields. Virtual particles are also excitations of the underlying fields, but are "temporary" in the sense that they appear in calculations of interactions, but never as asymptotic states or indices to the scattering matrix. The accuracy and use of virtual particles in calculations is firmly established, but as they cannot be detected in experiments, deciding how to precisely describe them is a topic of debate. [4] Although widely used, they are by no means a necessary feature of QFT, but rather are mathematical conveniences — as demonstrated by lattice field theory, which avoids using the concept altogether.

Properties

The concept of virtual particles arises in the perturbation theory of quantum field theory, an approximation scheme in which interactions (in essence, forces) between actual particles are calculated in terms of exchanges of virtual particles. Such calculations are often performed using schematic representations known as Feynman diagrams, in which virtual particles appear as internal lines. By expressing the interaction in terms of the exchange of a virtual particle with four-momentum q, where q is given by the difference between the four-momenta of the particles entering and leaving the interaction vertex, both momentum and energy are conserved at the interaction vertices of the Feynman diagram. [5] :119

A virtual particle does not precisely obey the energy–momentum relation m2c4 = E2p2c2. Its kinetic energy may not have the usual relationship to velocity. It can be negative. [6] :110 This is expressed by the phrase off mass shell . [5] :119 The probability amplitude for a virtual particle to exist tends to be canceled out by destructive interference over longer distances and times. As a consequence, a real photon is massless and thus has only two polarization states, whereas a virtual one, being effectively massive, has three polarization states.

Quantum tunnelling may be considered a manifestation of virtual particle exchanges. [7] :235 The range of forces carried by virtual particles is limited by the uncertainty principle, which regards energy and time as conjugate variables; thus, virtual particles of larger mass have more limited range. [8]

Written in the usual mathematical notations, in the equations of physics, there is no mark of the distinction between virtual and actual particles. The amplitudes of processes with a virtual particle interfere with the amplitudes of processes without it, whereas for an actual particle the cases of existence and non-existence cease to be coherent with each other and do not interfere any more. In the quantum field theory view, actual particles are viewed as being detectable excitations of underlying quantum fields. Virtual particles are also viewed as excitations of the underlying fields, but appear only as forces, not as detectable particles. They are "temporary" in the sense that they appear in some calculations, but are not detected as single particles. Thus, in mathematical terms, they never appear as indices to the scattering matrix, which is to say, they never appear as the observable inputs and outputs of the physical process being modelled.

There are two principal ways in which the notion of virtual particles appears in modern physics. They appear as intermediate terms in Feynman diagrams; that is, as terms in a perturbative calculation. They also appear as an infinite set of states to be summed or integrated over in the calculation of a semi-non-perturbative effect. In the latter case, it is sometimes said that virtual particles contribute to a mechanism that mediates the effect, or that the effect occurs through the virtual particles. [5] :118

Manifestations

There are many observable physical phenomena that arise in interactions involving virtual particles. For bosonic particles that exhibit rest mass when they are free and actual, virtual interactions are characterized by the relatively short range of the force interaction produced by particle exchange. Confinement can lead to a short range, too. Examples of such short-range interactions are the strong and weak forces, and their associated field bosons.

For the gravitational and electromagnetic forces, the zero rest-mass of the associated boson particle permits long-range forces to be mediated by virtual particles. However, in the case of photons, power and information transfer by virtual particles is a relatively short-range phenomenon (existing only within a few wavelengths of the field-disturbance, which carries information or transferred power), as for example seen in the characteristically short range of inductive and capacitative effects in the near field zone of coils and antennas.

Some field interactions which may be seen in terms of virtual particles are:

Most of these have analogous effects in solid-state physics; indeed, one can often gain a better intuitive understanding by examining these cases. In semiconductors, the roles of electrons, positrons and photons in field theory are replaced by electrons in the conduction band, holes in the valence band, and phonons or vibrations of the crystal lattice. A virtual particle is in a virtual state where the probability amplitude is not conserved. Examples of macroscopic virtual phonons, photons, and electrons in the case of the tunneling process were presented by Günter Nimtz [10] and Alfons A. Stahlhofen. [11]

Feynman diagrams

One particle exchange scattering diagram Momentum exchange.svg
One particle exchange scattering diagram

The calculation of scattering amplitudes in theoretical particle physics requires the use of some rather large and complicated integrals over a large number of variables. These integrals do, however, have a regular structure, and may be represented as Feynman diagrams. The appeal of the Feynman diagrams is strong, as it allows for a simple visual presentation of what would otherwise be a rather arcane and abstract formula. In particular, part of the appeal is that the outgoing legs of a Feynman diagram can be associated with actual, on-shell particles. Thus, it is natural to associate the other lines in the diagram with particles as well, called the "virtual particles". In mathematical terms, they correspond to the propagators appearing in the diagram.

In the adjacent image, the solid lines correspond to actual particles (of momentum p1 and so on), while the dotted line corresponds to a virtual particle carrying momentum k. For example, if the solid lines were to correspond to electrons interacting by means of the electromagnetic interaction, the dotted line would correspond to the exchange of a virtual photon. In the case of interacting nucleons, the dotted line would be a virtual pion. In the case of quarks interacting by means of the strong force, the dotted line would be a virtual gluon, and so on.

One-loop diagram with fermion propagator Vacuum polarization.svg
One-loop diagram with fermion propagator

Virtual particles may be mesons or vector bosons, as in the example above; they may also be fermions. However, in order to preserve quantum numbers, most simple diagrams involving fermion exchange are prohibited. The image to the right shows an allowed diagram, a one-loop diagram. The solid lines correspond to a fermion propagator, the wavy lines to bosons.

Vacuums

In formal terms, a particle is considered to be an eigenstate of the particle number operator aa, where a is the particle annihilation operator and a the particle creation operator (sometimes collectively called ladder operators). In many cases, the particle number operator does not commute with the Hamiltonian for the system. This implies the number of particles in an area of space is not a well-defined quantity but, like other quantum observables, is represented by a probability distribution. Since these particles are not certain to exist, they are called virtual particles or vacuum fluctuations of vacuum energy. In a certain sense, they can be understood to be a manifestation of the time-energy uncertainty principle in a vacuum. [12]

An important example of the "presence" of virtual particles in a vacuum is the Casimir effect. [13] Here, the explanation of the effect requires that the total energy of all of the virtual particles in a vacuum can be added together. Thus, although the virtual particles themselves are not directly observable in the laboratory, they do leave an observable effect: Their zero-point energy results in forces acting on suitably arranged metal plates or dielectrics. [14] On the other hand, the Casimir effect can be interpreted as the relativistic van der Waals force. [15]

Pair production

Virtual particles are often popularly described as coming in pairs, a particle and antiparticle which can be of any kind. These pairs exist for an extremely short time, and then mutually annihilate, or in some cases, the pair may be boosted apart using external energy so that they avoid annihilation and become actual particles, as described below.

This may occur in one of two ways. In an accelerating frame of reference, the virtual particles may appear to be actual to the accelerating observer; this is known as the Unruh effect. In short, the vacuum of a stationary frame appears, to the accelerated observer, to be a warm gas of actual particles in thermodynamic equilibrium.

Another example is pair production in very strong electric fields, sometimes called vacuum decay. If, for example, a pair of atomic nuclei are merged to very briefly form a nucleus with a charge greater than about 140, (that is, larger than about the inverse of the fine-structure constant, which is a dimensionless quantity), the strength of the electric field will be such that it will be energetically favorable[ further explanation needed ] to create positron–electron pairs out of the vacuum or Dirac sea, with the electron attracted to the nucleus to annihilate the positive charge. This pair-creation amplitude was first calculated by Julian Schwinger in 1951.

Compared to actual particles

As a consequence of quantum mechanical uncertainty, any object or process that exists for a limited time or in a limited volume cannot have a precisely defined energy or momentum. For this reason, virtual particles which exist only temporarily as they are exchanged between ordinary particles do not typically obey the mass-shell relation; the longer a virtual particle exists, the more the energy and momentum approach the mass-shell relation.

The lifetime of real particles is typically vastly longer than the lifetime of the virtual particles. Electromagnetic radiation consists of real photons which may travel light years between the emitter and absorber, but (Coulombic) electrostatic attraction and repulsion is a relatively short-range[ dubious discuss ] force that is a consequence of the exchange of virtual photons [ citation needed ].

See also

Footnotes

  1. "Far" in terms of ratio of antenna length or diameter, to wavelength.
  2. The electrical power in the fields, respectively, decrease as 1/r4 and 1/r2.
  3. See near and far field for a more detailed discussion. See near-field communication for practical communications applications of near fields.

Related Research Articles

<span class="mw-page-title-main">Antiparticle</span> Particle with opposite charges

In particle physics, every type of particle of "ordinary" matter is associated with an antiparticle with the same mass but with opposite physical charges. For example, the antiparticle of the electron is the positron. While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron.

<span class="mw-page-title-main">Electromagnetic radiation</span> Physical model of propagating energy

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy.

In physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist:

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light measured in vacuum. The photon belongs to the class of boson particles.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on quantum field theory.

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

<span class="mw-page-title-main">Zero-point energy</span> Lowest possible energy of a quantum system or field

Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. Therefore, even at absolute zero, atoms and molecules retain some vibrational motion. Apart from atoms and molecules, the empty space of the vacuum also has these properties. According to quantum field theory, the universe can be thought of not as isolated particles but continuous fluctuating fields: matter fields, whose quanta are fermions, and force fields, whose quanta are bosons. All these fields have zero-point energy. These fluctuating zero-point fields lead to a kind of reintroduction of an aether in physics since some systems can detect the existence of this energy. However, this aether cannot be thought of as a physical medium if it is to be Lorentz invariant such that there is no contradiction with Einstein's theory of special relativity.

In quantum field theory, a force carrier is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical field.

<span class="mw-page-title-main">Renormalization</span> Method in physics used to deal with infinities

Renormalization is a collection of techniques in quantum field theory, statistical field theory, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.

In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases.

<span class="mw-page-title-main">Coupling constant</span> Parameter describing the strength of a force

In physics, a coupling constant or gauge coupling parameter, is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies divided by the distance squared, , between the bodies; thus: in for Newtonian gravity and in for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers.

<span class="mw-page-title-main">Quantum vacuum state</span> Lowest-energy state of a field in quantum field theories, corresponding to no particles present

In quantum field theory, the quantum vacuum state is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The term zero-point field is sometimes used as a synonym for the vacuum state of a quantized field which is completely individual.

In quantum field theory, the energy that a particle has as a result of changes that it causes in its environment defines self-energy, and represents the contribution to the particle's energy, or effective mass, due to interactions between the particle and its environment. In electrostatics, the energy required to assemble the charge distribution takes the form of self-energy by bringing in the constituent charges from infinity, where the electric force goes to zero. In a condensed matter context, self-energy is used to describe interaction induced renormalization of quasiparticle mass (dispersions) and lifetime. Self-energy is especially used to describe electron-electron interactions in Fermi liquids. Another example of self-energy is found in the context of phonon softening due to electron-phonon coupling.

In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon).

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). The field theory behind QED was so accurate and successful in predictions that efforts were made to apply the same basic concepts for the other forces of nature. Beginning in 1954, the parallel was found by way of gauge theory, leading by the late 1970s, to quantum field models of strong nuclear force and weak nuclear force, united in the modern Standard Model of particle physics.

Quantum mechanics is the study of matter and its interactions with energy on the scale of atomic and subatomic particles. By contrast, classical physics explains matter and energy only on a scale familiar to human experience, including the behavior of astronomical bodies such as the moon. Classical physics is still used in much of modern science and technology. However, towards the end of the 19th century, scientists discovered phenomena in both the large (macro) and the small (micro) worlds that classical physics could not explain. The desire to resolve inconsistencies between observed phenomena and classical theory led to a revolution in physics, a shift in the original scientific paradigm: the development of quantum mechanics.

<span class="mw-page-title-main">Neutral current</span> Weak force particle interaction

Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step toward the unification of electromagnetism and the weak force into the electroweak force, and led to the discovery of the W and Z bosons.

In quantum field theory, initial and final state radiation refers to certain kinds of radiative emissions that are not due to particle annihilation. It is important in experimental and theoretical studies of interactions at particle colliders.

Virtual photons are a fundamental concept in particle physics and quantum field theory that play a crucial role in describing the interactions between electrically charged particles. Virtual photons are referred to as "virtual" because they do not exist as free particles in the traditional sense but instead serve as intermediate particles in the exchange of force between other particles. They are responsible for the electromagnetic force that holds matter together, making them a key component in our understanding of the physical world.

References

  1. Griffiths, D.J. (2008). Introduction to Elementary Particles (2nd ed.). John Wiley & Sons. p. 65. ISBN   978-3-527-40601-2.
  2. Peskin, M.E., Schroeder, D.V. (1995). An Introduction to Quantum Field Theory, Westview Press, ISBN   0-201-50397-2, p. 80.
  3. Mandl, F., Shaw, G. (1984/2002). Quantum Field Theory, John Wiley & Sons, Chichester UK, revised edition, ISBN   0-471-94186-7, pp. 56, 176.
  4. Jaeger, Gregg (2019). "Are virtual particles less real?" (PDF). Entropy. 21 (2): 141. Bibcode:2019Entrp..21..141J. doi: 10.3390/e21020141 . PMC   7514619 . PMID   33266857.
  5. 1 2 3 Thomson, Mark (2013). Modern particle physics. Cambridge: Cambridge University Press. ISBN   978-1107034266.
  6. Hawking, Stephen (1998). A brief history of time (Updated and expanded tenth anniversary ed.). New York: Bantam Books. ISBN   9780553896923.
  7. Walters, Tony Hey; Patrick (2004). The new quantum universe (Reprint. ed.). Cambridge [u.a.]: Cambridge Univ. Press. Bibcode:2003nqu..book.....H. ISBN   9780521564571.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. Calle, Carlos I. (2010). Superstrings and other things : a guide to physics (2nd ed.). Boca Raton: CRC Press/Taylor & Francis. pp. 443–444. ISBN   9781439810743.
  9. "Ephemeral vacuum particles induce speed-of-light fluctuations". Phys.org. Retrieved 2017-07-24.
  10. Nimtz, G. (2009). "On virtual phonons, photons, and electrons". Found. Phys. 39 (12): 1346–1355. arXiv: 0907.1611 . Bibcode:2009FoPh...39.1346N. doi:10.1007/s10701-009-9356-z. S2CID   118594121.
  11. Stahlhofen, A.; Nimtz, G. (2006). "Evanescent modes are virtual photons". Europhys. Lett. 76 (2): 198. Bibcode:2006EL.....76..189S. doi:10.1209/epl/i2006-10271-9. S2CID   250758644.
  12. Raymond, David J. (2012). A radically modern approach to introductory physics: volume 2: four forces. Socorro, NM: New Mexico Tech Press. pp. 252–254. ISBN   978-0-98303-946-4.
  13. Choi, Charles Q. (13 February 2013). "A vacuum can yield flashes of light". Nature. doi: 10.1038/nature.2013.12430 . S2CID   124394711 . Retrieved 2 August 2015.
  14. Lambrecht, Astrid (September 2002). "The Casimir effect: a force from nothing". Physics World. 15 (9): 29–32. doi:10.1088/2058-7058/15/9/29.
  15. Jaffe, R. L. (12 July 2005). "Casimir effect and the quantum vacuum". Physical Review D. 72 (2): 021301. arXiv: hep-th/0503158 . Bibcode:2005PhRvD..72b1301J. doi:10.1103/PhysRevD.72.021301. S2CID   13171179.