Uehling potential

Last updated
The vacuum (light blue) acts as a polarizable medium (composed of virtual particle-antiparticle pairs) that slightly modify the electric potential of the electron (depicted in the middle with minus sign). Polarization.png
The vacuum (light blue) acts as a polarizable medium (composed of virtual particle-antiparticle pairs) that slightly modify the electric potential of the electron (depicted in the middle with minus sign).

In quantum electrodynamics, the Uehling potential describes the interaction potential between two electric charges which, in addition to the classical Coulomb potential, contains an extra term responsible for the electric polarization of the vacuum. This potential was found by Edwin Albrecht Uehling in 1935. [1] [2]

Contents

Uehling's corrections take into account that the electromagnetic field of a point charge does not act instantaneously at a distance, but rather it is an interaction that takes place via exchange particles, the photons. In quantum field theory, due to the uncertainty principle between energy and time, a single photon can briefly form a virtual particle-antiparticle pair, that influences the point charge. This effect is called vacuum polarization, because it makes the vacuum appear like a polarizable medium. By far the dominant contribution comes from the lightest charged elementary particle, the electron. The corrections by Uehling are negligible in everyday practice, but it allows to calculate the spectral lines of hydrogen-like atoms with high precision.

Definition

The Uehling potential is given by (units and )

from where it is apparent that this potential is a refinement of the classical Coulomb potential. Here is the electron mass and is the elementary charge measured at large distances.

If , this potential simplifies to [3]

while for we have [3]

where is the Euler–Mascheroni constant (0.57721...).

Properties

It was recently demonstrated that the above integral in the expression of can be evaluated in closed form by using the modified Bessel functions of the second kind and its successive integrals. [4]

Effect on atomic spectra

Feynman diagram for vacuum polarization. Representing a virtual particle-antiparticle pair (loop with arrows) as a self-energy correction to the photon (wavy line). Feynman-loop1.svg
Feynman diagram for vacuum polarization. Representing a virtual particle-antiparticle pair (loop with arrows) as a self-energy correction to the photon (wavy line).

Since the Uehling potential only makes a significant contribution at small distances close to the nucleus, it mainly influences the energy of the s orbitals. Quantum mechanical perturbation theory can be used to calculate this influence in the atomic spectrum of atoms. The quantum electrodynamics corrections for the degenerated energy levels of the hydrogen atom are given by [5]

up to leading order in . Here stands for electronvolts.

Since the wave function of the s orbitals does not vanish at the origin, the corrections provided by the Uehling potential are of the order (where is the fine structure constant) and it becomes less important for orbitals with a higher azimuthal quantum number. This energy splitting in the spectra is about a ten times smaller than the fine structure corrections provided by the Dirac equation and this splitting is known as the Lamb shift (which includes Uehling potential and additional higher corrections from quantum electrodynamics). [5]

The Uehling effect is also central to muonic hydrogen as most of the energy shift is due to vacuum polarization. [5] In contrast to other variables such as the splitting through the fine structure, which scale together with the mass of the muon, i.e. by a factor of , the light electron mass continues to be the decisive size scale for the Uehling potential. The energy corrections are on the order of . [5]

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Hydrogen atom</span> Atom of the element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

<span class="mw-page-title-main">Maxwell–Boltzmann distribution</span> Specific probability distribution function, important in physics

In physics, the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

<span class="mw-page-title-main">Particle in a box</span> Mathematical model in quantum mechanics

In quantum mechanics, the particle in a box model describes the movement of a free particle in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In classical systems, for example, a particle trapped inside a large box can move at any speed within the box and it is no more likely to be found at one position than another. However, when the well becomes very narrow, quantum effects become important. The particle may only occupy certain positive energy levels. Likewise, it can never have zero energy, meaning that the particle can never "sit still". Additionally, it is more likely to be found at certain positions than at others, depending on its energy level. The particle may never be detected at certain positions, known as spatial nodes.

<span class="mw-page-title-main">Bremsstrahlung</span> Electromagnetic radiation due to deceleration of charged particles

In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.

<span class="mw-page-title-main">Fermi gas</span> Physical model of non-interacting fermions

A Fermi gas is an idealized model, an ensemble of many non-interacting fermions. Fermions are particles that obey Fermi–Dirac statistics, like electrons, protons, and neutrons, and, in general, particles with half-integer spin. These statistics determine the energy distribution of fermions in a Fermi gas in thermal equilibrium, and is characterized by their number density, temperature, and the set of available energy states. The model is named after the Italian physicist Enrico Fermi.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary or slow-moving electric charges

Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.

<span class="mw-page-title-main">Classical electromagnetism</span> Branch of theoretical physics

Classical electromagnetism or classical electrodynamics is a branch of physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. It is, therefore, a classical field theory. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics which is a quantum field theory.

<span class="mw-page-title-main">Particle in a spherically symmetric potential</span> Quantum mechanical model

In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space. A particle in a spherically symmetric potential will behave accordingly to said potential and can therefore be used as an approximation, for example, of the electron in a hydrogen atom or of the formation of chemical bonds.

In particle, atomic and condensed matter physics, a Yukawa potential is a potential named after the Japanese physicist Hideki Yukawa. The potential is of the form:

<span class="mw-page-title-main">Fine structure</span> Details in the emission spectrum of an atom

In atomic physics, the fine structure describes the splitting of the spectral lines of atoms due to electron spin and relativistic corrections to the non-relativistic Schrödinger equation. It was first measured precisely for the hydrogen atom by Albert A. Michelson and Edward W. Morley in 1887, laying the basis for the theoretical treatment by Arnold Sommerfeld, introducing the fine-structure constant.

<span class="mw-page-title-main">Lamb shift</span> Difference in energy of hydrogenic atom electron states not predicted by the Dirac equation

In physics, the Lamb shift, named after Willis Lamb, is an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which predicts identical energies. Hence the Lamb shift is a deviation from theory seen in the differing energies contained by the 2S1/2 and 2P1/2 orbitals of the hydrogen atom.

Polarizability usually refers to the tendency of matter, when subjected to an electric field, to acquire an electric dipole moment in proportion to that applied field. It is a property of particles with an electric charge. When subject to an electric field, the negatively charged electrons and positively charged atomic nuclei are subject to opposite forces and undergo charge separation. Polarizability is responsible for a material's dielectric constant and, at high (optical) frequencies, its refractive index.

The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.

In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon).

The Gamow factor, Sommerfeld factor or Gamow–Sommerfeld factor, named after its discoverer George Gamow or after Arnold Sommerfeld, is a probability factor for two nuclear particles' chance of overcoming the Coulomb barrier in order to undergo nuclear reactions, for example in nuclear fusion. By classical physics, there is almost no possibility for protons to fuse by crossing each other's Coulomb barrier at temperatures commonly observed to cause fusion, such as those found in the Sun. When George Gamow instead applied quantum mechanics to the problem, he found that there was a significant chance for the fusion due to tunneling.

<span class="mw-page-title-main">Helium atom</span> Atom of helium

A helium atom is an atom of the chemical element helium. Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen, a closed-form solution to the Schrödinger equation for the helium atom has not been found. However, various approximations, such as the Hartree–Fock method, can be used to estimate the ground state energy and wavefunction of the atom. Historically, the first such helium spectrum calculation was done by Albrecht Unsöld in 1927. Its success was considered to be one of the earliest signs of validity of Schrödinger's wave mechanics.

<span class="mw-page-title-main">Coulomb's law</span> Fundamental physical law of electromagnetism

Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force. Although the law was known earlier, it was first published in 1785 by French physicist Charles-Augustin de Coulomb. Coulomb's law was essential to the development of the theory of electromagnetism and maybe even its starting point, as it allowed meaningful discussions of the amount of electric charge in a particle.

<span class="mw-page-title-main">Kicked rotator</span>

The kicked rotator, also spelled as kicked rotor, is a paradigmatic model for both Hamiltonian chaos and quantum chaos. It describes a free rotating stick in an inhomogeneous "gravitation like" field that is periodically switched on in short pulses. The model is described by the Hamiltonian

<span class="mw-page-title-main">QED vacuum</span> Lowest energy state in quantum electrodynamics

The QED vacuum or quantum electrodynamic vacuum is the field-theoretic vacuum of quantum electrodynamics. It is the lowest energy state of the electromagnetic field when the fields are quantized. When the Planck constant is hypothetically allowed to approach zero, QED vacuum is converted to classical vacuum, which is to say, the vacuum of classical electromagnetism.

References

  1. Uehling, E. A. (1935). "Polarization Effects in the Positron Theory". Physical Review. 48 (1): 55–63. Bibcode:1935PhRv...48...55U. doi:10.1103/physrev.48.55.
  2. Schwartz, M. D. (2013). "16". Quantum Field Theory and the Standard Model. Cambridge University Press. ISBN   978-1-107-03473-0.
  3. 1 2 Berestetskiĭ, V. B.; Lifshits, E. M.; Pitaevskiĭ, L. P. (2008). Quantum electrodynamics. J. B. Sykes, J. S. Bell (2 ed.). Oxford: Butterworth-Heinemann. ISBN   978-0-08-050346-2. OCLC   785780331.
  4. Frolov, A. E.; Wardlaw, D. M. (2012). "Analytical formula for the Uehling potential". The European Physical Journal B. 85 (10): 348. arXiv: 1110.3433 . Bibcode:2012EPJB...85..348F. doi:10.1140/epjb/e2012-30408-4. S2CID   119249839.
  5. 1 2 3 4 Greiner, Walter; Reinhardt, Joachim (2003). Quantum Electrodynamics. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-662-05246-4. ISBN   978-3-540-44029-1. S2CID   149894475.

Further reading