Accelerator neutrino

Last updated

An accelerator neutrino is a human-generated neutrino or antineutrino obtained using particle accelerators, in which beam of protons is accelerated and collided with a fixed target, producing mesons (mainly pions) which then decay into neutrinos. Depending on the energy of the accelerated protons and whether mesons decay in flight or at rest it is possible to generate neutrinos of a different flavour, energy and angular distribution. Accelerator neutrinos are used to study neutrino interactions and neutrino oscillations taking advantage of high intensity of neutrino beams, as well as a possibility to control and understand their type and kinematic properties to a much greater extent than for neutrinos from other sources.

Contents

Muon neutrino beam production

Neutrino beam production.svg
Muon neutrino beam production scheme
Antineutrino beam production.svg
Muon antineutrino beam production scheme

The process of the muon neutrino or muon antineutrino beam production consists of the following steps: [1] [2]


π+

μ+
+
ν
μ
,   
π

μ
+
ν
μ

It is usually intended to have a pure beam, containing only one type of neutrino: either
ν
μ
or
ν
μ
. Thus, the length of the decay tunnel is optimised to maximise the number of pion decays and simultaneously minimise the number of muon decays, [4] in which undesirable types of neutrinos are produced:


μ+

e+
+
ν
μ
+
ν
e
,   
μ

e
+
ν
μ
+
ν
e

In most of kaon decays [5] the appropriate type of neutrinos (muon neutrinos for positive kaons and muon antineutrinos for negative kaons) are produced:


K+

μ+
+
ν
μ
,   
K

μ
+
ν
μ
,    (63.56% of decays),

K+

μ+
+
ν
μ
+
π0
,   
K

μ
+
ν
μ
+
π0
,    (3.35% of decays),

however, decays into electron (anti)neutrinos, is also a significant fraction:


K+

e+
+
ν
e
+
π0
,   
K

e
+
ν
e
+
π0
,    (5.07% of decays).

Neutrino beam kinematic properties

Neutrinos do not have an electric charge, so they cannot be focused or accelerated using electric and magnetic fields, and thus it is not possible to create a parallel, mono-energetic beam of neutrinos, as is done for charged particles beams in accelerators. To some extent, it is possible to control the direction and energy of neutrinos by properly selecting energy of the primary proton beam and focusing secondary pions and kaons, because the neutrinos take over part of their kinetic energy and move in a direction close to the parent particles.

Off-axis beam

A method that allows to further narrow the energy distribution of the produced neutrinos is the usage of the so-called off-axis beam. [6] The accelerator neutrino beam is a wide beam that has no clear boundaries, because the neutrinos in it do not move in parallel, but have a certain angular distribution. However, the farther from the axis (centre) of the beam, the smaller is the number of neutrinos, but also the distribution of energy changes. The energy spectrum becomes narrower and its maximum shifts towards lower energies. The off-axis angle, and thus the neutrino energy spectrum, can be optimised to maximize neutrino oscillation probability or to select the energy range in which the desired type of neutrino interaction is dominant.

The first experiment in which the off-axis neutrino beam was used was the T2K experiment [7]

Monitored and tagged neutrino beams

A high level of control of neutrinos at the source can be achieved by monitoring the production of charged leptons (positrons, muons) in the decay tunnel of the neutrino beam. Facilities that employ this method are called monitored neutrino beams. If the lepton rate is sufficiently small, modern particle detectors can time-tag the charged lepton produced in the decay tunnel and associate this lepton to the neutrino observed in the neutrino detector. This idea, which dates back to the 1960s, [8] has been developed in the framework of the tagged neutrino beam concept but it has not been demonstrated, yet. Monitored neutrino beams produce neutrinos in a narrow energy range and, therefore, can employ the off-axis technique to predict the neutrino energy by measuring the interaction vertex, that is the distance of the neutrino interaction from the nominal beam axis. An energy resolution in the 10-20% range has been demonstrated in 2021 by the ENUBET Collaboration. [9]

Neutrino beams in physics experiments

Below is the list of muon (anti)neutrino beams used in past or current physics experiments:

Notes

  1. T2K Collaboration (2011). "The T2K experiment". Nucl. Instrum. Methods A. 659 (1): 106–135. arXiv: 1106.1238 . Bibcode:2011NIMPA.659..106A. doi:10.1016/j.nima.2011.06.067. S2CID   55962579.
  2. KOPP, S (February 2007). "Accelerator neutrino beams". Physics Reports. 439 (3): 101–159. arXiv: physics/0609129 . Bibcode:2007PhR...439..101K. doi:10.1016/j.physrep.2006.11.004. S2CID   13894304.
  3. M. Tanabashi; et al. (Particle Data Group). "2019 Review of Particle Physics : Mesons" (PDF). Phys. Rev. D98: 1. doi: 10.1103/PhysRevD.98.030001 . (2018) and 2019 update
  4. M. Tanabashi; et al. (Particle Data Group). "2019 Review of Particle Physics : Leptons" (PDF). Phys. Rev. D98: 2. doi: 10.1103/PhysRevD.98.030001 . (2018) and 2019 update
  5. M. Tanabashi; et al. (Particle Data Group). "2019 Review of Particle Physics : Mesons" (PDF). Phys. Rev. D98: 24. doi: 10.1103/PhysRevD.98.030001 . (2018) and 2019 update
  6. Kirk T McDonald (2001). "An Off-Axis Neutrino Beam". arXiv: hep-ex/0111033 . Bibcode:2001hep.ex...11033M.{{cite journal}}: Cite journal requires |journal= (help)
  7. 1 2 T2K Collaboration (2013). "T2K neutrino flux prediction". Phys. Rev. D87 (1): 012001. arXiv: 1211.0469 . Bibcode:2013PhRvD..87a2001A. doi:10.1103/PhysRevD.87.012001. S2CID   55114627.
  8. Hand, L. N. (31 October 1970). "A study of 40 to 90 GeV neutrino interactions using a tagged neutrino beam". Cornell Univ., Ithaca, N. Y. OSTI   4117486 . Retrieved 28 November 2021.{{cite journal}}: Cite journal requires |journal= (help)
  9. Longhin, A.; Terranova, F. (15 March 2022). "Enhanced NeUtrino BEams from kaon Tagging (ENUBET)". arXiv: 2203.08319 [hep-ex].
  10. Giacomelli, G (1 June 2008). "The CNGS neutrino beam". Journal of Physics: Conference Series. 116 (1): 012004. arXiv: physics/0703247 . Bibcode:2008JPhCS.116a2004G. doi:10.1088/1742-6596/116/1/012004. S2CID   2624092.

Further reading

Related Research Articles

<span class="mw-page-title-main">Muon</span> Subatomic particle

A muon is an elementary particle similar to the electron, with an electric charge of −1 e and a spin of 1/2, but with a much greater mass. It is classified as a lepton. As with other leptons, the muon is not thought to be composed of any simpler particles; that is, it is a fundamental particle.

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass

A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

<span class="mw-page-title-main">Pion</span> Lightest meson

In particle physics, a pion is any of three subatomic particles:
π0
,
π+
, and
π
. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions
π+
and
π
decaying after a mean lifetime of 26.033 nanoseconds, and the neutral pion
π0
decaying after a much shorter lifetime of 85 attoseconds. Charged pions most often decay into muons and muon neutrinos, while neutral pions generally decay into gamma rays.

<span class="mw-page-title-main">Lepton</span> Class of elementary particles

In particle physics, a lepton is an elementary particle of half-integer spin that does not undergo strong interactions. Two main classes of leptons exist: charged leptons, and neutral leptons. Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

The tau, also called the tau lepton, tau particle, tauon or tau electron, is an elementary particle similar to the electron, with negative electric charge and a spin of 1/2. Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau". Tau particles are denoted by the symbol
τ
and the antitaus by 
τ+
.

The BaBar experiment, or simply BaBar, is an international collaboration of more than 500 physicists and engineers studying the subatomic world at energies of approximately ten times the rest mass of a proton (~10 GeV). Its design was motivated by the investigation of charge-parity violation. BaBar is located at the SLAC National Accelerator Laboratory, which is operated by Stanford University for the Department of Energy in California.

<span class="mw-page-title-main">Gargamelle</span> CERN Bubble chamber particle detector

Gargamelle was a heavy liquid bubble chamber detector in operation at CERN between 1970 and 1979. It was designed to detect neutrinos and antineutrinos, which were produced with a beam from the Proton Synchrotron (PS) between 1970 and 1976, before the detector was moved to the Super Proton Synchrotron (SPS). In 1979 an irreparable crack was discovered in the bubble chamber, and the detector was decommissioned. It is currently part of the "Microcosm" exhibition at CERN, open to the public.

<span class="mw-page-title-main">Jack Steinberger</span> German-American physicist, Nobel laureate (1921–2020)

Jack Steinberger was a German-born American physicist noted for his work with neutrinos, the subatomic particles considered to be elementary constituents of matter. He was a recipient of the 1988 Nobel Prize in Physics, along with Leon M. Lederman and Melvin Schwartz, for the discovery of the muon neutrino. Through his career as an experimental particle physicist, he held positions at the University of California, Berkeley, Columbia University (1950–68), and the CERN (1968–86). He was also a recipient of the United States National Medal of Science in 1988, and the Matteucci Medal from the Italian Academy of Sciences in 1990.

In particle physics, lepton number is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction. Lepton number is an additive quantum number, so its sum is preserved in interactions. The lepton number is defined by

CLEO was a general purpose particle detector at the Cornell Electron Storage Ring (CESR), and the name of the collaboration of physicists who operated the detector. The name CLEO is not an acronym; it is short for Cleopatra and was chosen to go with CESR. CESR was a particle accelerator designed to collide electrons and positrons at a center-of-mass energy of approximately 10 GeV. The energy of the accelerator was chosen before the first three bottom quark Upsilon resonances were discovered between 9.4 GeV and 10.4 GeV in 1977. The fourth Υ resonance, the Υ(4S), was slightly above the threshold for, and therefore ideal for the study of, B meson production.

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking (T2K-II) is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

<span class="mw-page-title-main">Hyper-Kamiokande</span> Neutrino observatory in Japan

Hyper-Kamiokande is a neutrino observatory and experiment under construction, conducted in Japan by the collaboration of institutes from 21 countries from six continents. As a successor of the Super-Kamiokande (SK) and T2K experiments, it is designed to search for proton decay and detect neutrinos from natural sources such as the Earth, the atmosphere, the Sun and the cosmos, as well as to study neutrino oscillations of the man-made accelerator neutrino beam. The beginning of data-taking is planned for 2027.

The timeline of particle physics lists the sequence of particle physics theories and discoveries in chronological order. The most modern developments follow the scientific development of the discipline of particle physics.

J-PARC is a high intensity proton accelerator facility. It is a joint project between KEK and JAEA and is located at the Tokai campus of JAEA. J-PARC aims for the frontier in materials and life sciences, and nuclear and particle physics. J-PARC uses high intensity proton beams to create high intensity secondary beams of neutrons, hadrons, and neutrinos.

The K2K experiment was a neutrino experiment that ran from June 1999 to November 2004. It used muon neutrinos from a well-controlled and well-understood beam to verify the oscillations previously observed by Super-Kamiokande using atmospheric neutrinos. This was the first positive measurement of neutrino oscillations in which both the source and detector were fully under experimenters' control. Previous experiments relied on neutrinos from the Sun or from cosmic sources. The experiment found oscillation parameters which were consistent with those measured by Super-Kamiokande.

<span class="mw-page-title-main">Accelerator Neutrino Neutron Interaction Experiment</span> Water Cherenkov detector experiment

The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a proposed water Cherenkov detector experiment designed to examine the nature of neutrino interactions. This experiment will study phenomena like proton decay, and neutrino oscillations, by analyzing neutrino interactions in gadolinium-loaded water and measuring their neutron yield. Neutron Tagging plays an important role in background rejection from atmospheric neutrinos. By implementing early prototypes of LAPPDs, high precision timing is possible. The suggested location for ANNIE is the SciBooNE hall on the Booster Neutrino Beam associated with the MiniBooNE experiment. The neutrino beam originates in Fermilab where The Booster delivers 8 GeV protons to a beryllium target producing secondary pions and kaons. These secondary mesons decay to produce a neutrino beam with an average energy of around 800 MeV. ANNIE will begin installation in the summer of 2015. Phase I of ANNIE, mapping the neutron background, completed in 2017. The detector is being upgraded for full science operation which is expected to begin late 2018.

<span class="mw-page-title-main">Luigi Di Lella</span> Italian experimental particle physicist

Luigi Di Lella is an Italian experimental particle physicist. He has been a staff member at CERN for over 40 years, and has played an important role in major experiments at CERN such as CAST and UA2. From 1986 to 1990 he acted as spokesperson for the UA2 Collaboration, which, together with the UA1 Collaboration, discovered the W and Z bosons in 1983.

<span class="mw-page-title-main">David B. Cline</span> American particle physicist

]

The Enhanced NeUtrino BEams from kaon Tagging or ENUBET is an ERC funded project that aims at producing an artificial neutrino beam in which the flavor, flux and energy of the produced neutrinos are known with unprecedented precision.

Monitored neutrino beams are facilities for the production of neutrinos with unprecedented control of the flux of particles created inside and outside the facility.