Mott scattering

Last updated

In physics, Mott scattering, also referred to as spin-coupling inelastic Coulomb scattering, is the separation of the two spin states of an electron beam by scattering the beam off the Coulomb field of heavy atoms. It is named after Nevill Francis Mott, who first developed the theory. It is mostly used to measure the spin polarization of an electron beam.

In lay terms, Mott scattering is similar to Rutherford scattering but electrons are used instead of alpha particles as they do not interact via the strong interaction (only through weak interaction and electromagnetism), which enable electrons to penetrate the atomic nucleus, giving valuable insight into the nuclear structure.

Description

The electrons are often fired at gold foil because gold has a high atomic number (Z), is non-reactive (does not form an oxide layer), and can be easily made into a thin film (reducing multiple scattering). The presence of a spin-orbit term in the scattering potential introduces a spin dependence in the scattering cross section. Two detectors at exactly the same scattering angle to the left and right of the foil count the number of scattered electrons. The asymmetry A, given by:

is proportional to the degree of spin polarization P according to A = SP, where S is the Sherman function.

The Mott cross section formula is the mathematical description of the scattering of a high energy electron beam from an atomic nucleus-sized positively charged point in space. The Mott scattering is the theoretical diffraction pattern produced by such a mathematical model. It is used as the beginning point in calculations in electron scattering diffraction studies.

The equation for the Mott cross section includes an inelastic scattering term to take into account the recoil of the target proton or nucleus. It also can be corrected for relativistic effects of high energy electrons, and for their magnetic moment. [1]

When an experimentally found diffraction pattern deviates from the mathematically derived Mott scattering, it gives clues as to the size and shape of an atomic nucleus [2] [1] The reason is that the Mott cross section assumes only point-particle Coulombic and magnetic interactions between the incoming electrons and the target. When the target is a charged sphere rather than a point, additions to the Mott cross section equation (form factor terms) can be used to probe the distribution of the charge inside the sphere.

The Born approximation of the diffraction of a beam of electrons by atomic nuclei is an extension of Mott scattering. [3]

Related Research Articles

<span class="mw-page-title-main">Nuclear physics</span> Field of physics that studies atomic nuclei

Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter.

A timeline of atomic and subatomic physics, including particle physics.

<span class="mw-page-title-main">Scattering</span> Range of physical processes

In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections. Originally, the term was confined to light scattering. As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" in 1800. John Tyndall, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of cathode rays and X-rays was observed and discussed. With the discovery of subatomic particles and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.

<span class="mw-page-title-main">Neutron diffraction</span> Technique to investigate atomic structures using neutron scattering

Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material. The technique is similar to X-ray diffraction but due to their different scattering properties, neutrons and X-rays provide complementary information: X-Rays are suited for superficial analysis, strong x-rays from synchrotron radiation are suited for shallow depths or thin specimens, while neutrons having high penetration depth are suited for bulk samples.

<span class="mw-page-title-main">Nuclear reaction</span> Transformation of a nuclide to another

In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle, they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.

<span class="mw-page-title-main">Neutron scattering</span> Physical phenomenon

Neutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. The natural/physical phenomenon is of elemental importance in nuclear engineering and the nuclear sciences. Regarding the experimental technique, understanding and manipulating neutron scattering is fundamental to the applications used in crystallography, physics, physical chemistry, biophysics, and materials research.

The nuclear cross section of a nucleus is used to describe the probability that a nuclear reaction will occur. The concept of a nuclear cross section can be quantified physically in terms of "characteristic area" where a larger area means a larger probability of interaction. The standard unit for measuring a nuclear cross section is the barn, which is equal to 10−28 m2, 10−24 cm2 or 100 fm2. Cross sections can be measured for all possible interaction processes together, in which case they are called total cross sections, or for specific processes, distinguishing elastic scattering and inelastic scattering; of the latter, amongst neutron cross sections the absorption cross sections are of particular interest.

Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering, is an ion beam analysis technique in materials science to obtain elemental concentration depth profiles in thin films. This technique is known by several different names. These names are listed below. In the technique of ERDA, an energetic ion beam is directed at a sample to be characterized and there is an elastic nuclear interaction between the ions of beam and the atoms of the target sample. Such interactions are commonly of Coulomb nature. Depending on the kinetics of the ions, cross section area, and the loss of energy of the ions in the matter, ERDA helps determine the quantification of the elemental analysis. It also provides information about the depth profile of the sample.

In particle physics, spin polarization is the degree to which the spin, i.e., the intrinsic angular momentum of elementary particles, is aligned with a given direction. This property may pertain to the spin, hence to the magnetic moment, of conduction electrons in ferromagnetic metals, such as iron, giving rise to spin-polarized currents. It may refer to (static) spin waves, preferential correlation of spin orientation with ordered lattices.

<span class="mw-page-title-main">Electron scattering</span> Deviation of electrons from their original trajectories

Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.

Asım Orhan Barut was a Turkish-American theoretical physicist.

<span class="mw-page-title-main">Mainz Microtron</span> Particle physics facility

The Mainz Microtron, abbreviated MAMI, is a microtron which provides a continuous wave, high intensity, polarized electron beam with an energy up to 1.6 GeV. MAMI is the core of an experimental facility for particle, nuclear and X-ray radiation physics at the Johannes Gutenberg University in Mainz (Germany). It is one of the largest campus-based accelerator facilities for basic research in Europe. The experiments at MAMI are performed by about 200 physicists of many countries organized in international collaborations.

<span class="mw-page-title-main">Channelling (physics)</span> Process constraining a charged particles path through a crystal

In condensed-matter physics, channelling (or channeling) is the process that constrains the path of a charged particle in a crystalline solid.

In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation play a central role in computational chemistry and physics for computing properties of molecules and aggregates of molecules, such as thermal conductivity, specific heat, electrical conductivity, optical, and magnetic properties, and reactivity.

<span class="mw-page-title-main">Atomic form factor</span> Measure of the scattering amplitude of a wave by an isolated atom

In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom. The atomic form factor depends on the type of scattering, which in turn depends on the nature of the incident radiation, typically X-ray, electron or neutron. The common feature of all form factors is that they involve a Fourier transform of a spatial density distribution of the scattering object from real space to momentum space. For an object with spatial density distribution, , the form factor, , is defined as

Helium atom scattering (HAS) is a surface analysis technique used in materials science. It provides information about the surface structure and lattice dynamics of a material by measuring the diffracted atoms from a monochromatic helium beam incident on the sample.

<span class="mw-page-title-main">Low-energy ion scattering</span>

Low-energy ion scattering spectroscopy (LEIS), sometimes referred to simply as ion scattering spectroscopy (ISS), is a surface-sensitive analytical technique used to characterize the chemical and structural makeup of materials. LEIS involves directing a stream of charged particles known as ions at a surface and making observations of the positions, velocities, and energies of the ions that have interacted with the surface. Data that is thus collected can be used to deduce information about the material such as the relative positions of atoms in a surface lattice and the elemental identity of those atoms. LEIS is closely related to both medium-energy ion scattering (MEIS) and high-energy ion scattering, differing primarily in the energy range of the ion beam used to probe the surface. While much of the information collected using LEIS can be obtained using other surface science techniques, LEIS is unique in its sensitivity to both structure and composition of surfaces. Additionally, LEIS is one of a very few surface-sensitive techniques capable of directly observing hydrogen atoms, an aspect that may make it an increasingly more important technique as the hydrogen economy is being explored.

Rutherford backscattering spectrometry (RBS) is an analytical technique used in materials science. Sometimes referred to as high-energy ion scattering (HEIS) spectrometry, RBS is used to determine the structure and composition of materials by measuring the backscattering of a beam of high energy ions (typically protons or alpha particles) impinging on a sample.

The Mott–Bethe formula is an approximation used to calculate atomic electron scattering form factors, , from atomic X-ray scattering form factors, . The formula was derived independently by Hans Bethe and Neville Mott both in 1930, and simply follows from applying the first Born approximation for the scattering of electrons via the Coulomb interaction together with the Poisson equation for the charge density of an atom in the Fourier domain. Following the first Born approximation,

<span class="mw-page-title-main">Sherman function</span>

The Sherman function describes the dependence of electron-atom scattering events on the spin of the scattered electrons. It was first evaluated theoretically by the physicist Noah Sherman and it allows the measurement of polarization of an electron beam by Mott scattering experiments. A correct evaluation of the Sherman function associated to a particular experimental setup is of vital importance in experiments of spin polarized photoemission spectroscopy, which is an experimental technique which allows to obtain information about the magnetic behaviour of a sample.

References

  1. 1 2 "Electron Scattering from Nuclei". Hyperphysics. Retrieved 2020-03-19.
  2. Rose, M. E. (1948-02-15). "The Charge Distribution in Nuclei and the Scattering of High Energy Electrons". Physical Review. 73 (4). American Physical Society (APS): 279–284. Bibcode:1948PhRv...73..279R. doi:10.1103/physrev.73.279. hdl: 2027/mdp.39015074122907 . ISSN   0031-899X.
  3. Mott, N. F.; Massey, H.S.W. (1965). The theory of atomic collisions (3rd ed.). Oxford: Clarendon Press. ISBN   978-0-19-851242-4. OCLC   537272.