Types of Scattering | |
---|---|
Electron ( e− , β− ) | |
Particle | Electron |
Mass | 9.10938291(40)×10−31 kg [1] 5.4857990946(22)×10−4 Da [1] [1822.8884845(14)]−1 Da [note 1] 0.510998928(11) MeV/c2 [1] |
Electric Charge | −1 e [note 2] −1.602176565(35)×10−19 C [1] −4.80320451(10)×10−10 esu |
Magnetic Moment | −1.00115965218076(27) μB [1] |
Spin | 1⁄2 |
Scattering | |
Forces/Effects | Lorentz force, Electrostatic force, Gravitation, Weak interaction |
Measures | Charge, Current |
Categories | Elastic collision, Inelastic collision, High energy, Low energy |
Interactions | e− – e− e− – γ e− – e+ e− – p e− – n e− –nucleus |
Types | Compton scattering Møller scattering Mott scattering Bhabha scattering Bremsstrahlung Deep inelastic scattering Synchrotron emission Thomson scattering |
Electron scattering occurs when electrons are displaced from their original trajectory. This is due to the electrostatic forces within matter interaction or, [2] [3] if an external magnetic field is present, the electron may be deflected by the Lorentz force. [4] [5] This scattering typically happens with solids such as metals, semiconductors and insulators; [6] and is a limiting factor in integrated circuits and transistors. [2]
Electron scattering has many applications ranging from the use of swift electron in electron microscopes to very high energies for hadronic systems, that allows the measurement of the distribution of charges for nucleons and nuclear structure. [7] [8] The scattering of electrons has allowed us to understand that protons and neutrons are made up of the smaller elementary subatomic particles called quarks. [2]
Electrons may be scattered through a solid in several ways:
The likelihood of an electron scattering and the degree of the scattering is a probability function of the specimen thickness and the mean free path. [6]
The principle of the electron was first theorised in the period of 1838–1851 by a natural philosopher by the name of Richard Laming who speculated the existence of sub-atomic, unit charged particles; he also pictured the atom as being an 'electrosphere' of concentric shells of electrical particles surrounding a material core. [9] [note 3]
It is generally accepted that J. J. Thomson first discovered the electron in 1897, although other notable members in the development in charged particle theory are George Johnstone Stoney (who coined the term "electron"), Emil Wiechert (who was first to publish his independent discovery of the electron), Walter Kaufmann, Pieter Zeeman and Hendrik Lorentz. [10]
Compton scattering was first observed at Washington University in St. Louis in 1923 by Arthur Compton who earned the 1927 Nobel Prize in Physics for the discovery; his graduate student Y. H. Woo who further verified the results is also of mention. Compton scattering is usually cited in reference to the interaction involving the electrons of an atom, however nuclear Compton scattering does exist.[ citation needed ]
The first electron diffraction experiment was conducted in 1927 by Clinton Davisson and Lester Germer using what would come to be a prototype for modern LEED system. [11] The experiment was able to demonstrate the wave-like properties of electrons, [note 4] thus confirming the de Broglie hypothesis that matter particles have a wave-like nature.[ citation needed ] However, after this the interest in LEED diminished in favour of high-energy electron diffraction
until the early 1960s when an interest in LEED was revived; of notable mention during this period is H. E. Farnsworth who continued to develop LEED techniques. [11]
High energy electron-electron colliding beam history begins in 1956 when K. O'Neill of Princeton University became interested in high energy collisions, and introduced the idea of accelerator(s) injecting into storage ring(s). While the idea of beam-beam collisions had been around since approximately the 1920s, it was not until 1953 that a German patent for colliding beam apparatus was obtained by Rolf Widerøe. [12]
Electrons can be scattered by other charged particles through the electrostatic Coulomb forces. Furthermore, if a magnetic field is present, a traveling electron will be deflected by the Lorentz force. An extremely accurate description of all electron scattering, including quantum and relativistic aspects, is given by the theory of quantum electrodynamics.
The Lorentz force, named after Dutch physicist Hendrik Lorentz, for a charged particle q is given (in SI units) by the equation: [13]
where qE describes the electric force due to a present electric field, E, acting on q.
And qv × B describes the magnetic force due to a present magnetic field, B, acting on q when q is moving with velocity v. [13] [14]
This can also be written as:
where is the electric potential, and A is the magnetic vector potential. [15]
It was Oliver Heaviside who is attributed in 1885 and 1889 to first deriving the correct expression for the Lorentz force of qv × B. [16] Hendrik Lorentz derived and refined the concept in 1892 and gave it his name, [17] incorporating forces due to electric fields.
Rewriting this as the equation of motion for a free particle of charge q mass m,this becomes: [13]
or
in the relativistic case using Lorentz contraction where γ is: [18]
this equation of motion was first verified in 1897 in J. J. Thomson's experiment investigating cathode rays which confirmed, through bending of the rays in a magnetic field, that these rays were a stream of charged particles now known as electrons. [10] [13]
Variations on this basic formula describe the magnetic force on a current-carrying wire (sometimes called Laplace force), the electromotive force in a wire loop moving through a magnetic field (an aspect of Faraday's law of induction), and the force on a particle which might be traveling near the speed of light (relativistic form of the Lorentz force).
Electrostatic Coulomb force also known as Coulomb interaction and electrostatic force, named for Charles-Augustin de Coulomb who published the result in 1785, describes the attraction or repulsion of particles due to their electric charge. [19]
Coulomb's law states that:
The magnitude of the electrostatic force is proportional to the scalar multiple of the charge magnitudes, and inversely proportional to the square of the distance (i.e. inverse-square law), and is given by:
or in vector notation:
where q1, q2 are two point charges; r-hat being the unit vector direction of the distance r between charges and ε0 is the permittivity of free space, given in SI units by: [20]
The directions of the forces exerted by the two charges on one another are always along the straight line joining them (the shortest distance), and are vector forces of infinite range, and obey Newton's third law, being of equal magnitude and opposite direction. Further, when both charges q1 and q2 have the same sign (either both positive or both negative) the forces between them are repulsive, if they are of opposite sign then the forces are attractive. [20] [21] These forces obey an important property called the principle of superposition of forces which states that if a third charge were introduced then the total force acting on that charge is the vector sum of the forces that would be exerted by the other charges individually, this holds for any number of charges. [20] However, Coulomb's law has been stated for charges in a vacuum, if the space between point charges contains matter then the permittivity of the matter between the charges must be accounted for as follows:
where εr is the relative permittivity of the space the force acts through, and is dimensionless. [20]
If two particles interact with one another in a scattering process there are two results possible after the interaction: [22]
Elastic scattering is when the collisions between target and incident particles have total conservation of kinetic energy. [23] This implies that there is no breaking up of the particles or energy loss through vibrations, [23] [24] that is to say that the internal states of each of the particles remains unchanged. [22] Due to the fact that there is no breaking present, elastic collisions can be modeled as occurring between point-like particles, [24] a principle that is very useful for an elementary particle such as the electron. [22]
Inelastic scattering is when the collisions do not conserve kinetic energy, [23] [24] and as such the internal states of one or both of the particles has changed. [22] This is due to energy being converted into vibrations which can be interpreted as heat, waves (sound), or vibrations between constituent particles of either collision party. [23] Particles may also split apart, further energy can be converted into breaking the chemical bonds between components. [23]
Furthermore, momentum is conserved in both elastic and inelastic scattering. [23] Other results than scattering are reactions, in which the structure of the interacting particles is changed producing two or more generally complex particles, and the creation of new particles that are not constituent elementary particles of the interacting particles. [22] [23]
Electron scattering by isolated atoms and molecules occurs in the gas phase. It plays a key role in plasma physics and chemistry and it's important for such applications as semiconductor physics. Electron-molecule/atom scattering is normally treated by means of quantum mechanics. The leading approach to compute the cross sections is using R-matrix method.
Compton scattering, so named for Arthur Compton who first observed the effect in 1922 and which earned him the 1927 Nobel Prize in Physics; [25] is the inelastic scattering of a high-energy photon by a free charged particle. [26] [note 6]
This was demonstrated in 1923 by firing radiation of a given wavelength (X-rays in the given case) through a foil (carbon target), which was scattered in a manner inconsistent with classical radiation theory. [26] [note 7] Compton published a paper in the Physical Review explaining the phenomenon: A quantum theory of the scattering of X-rays by light elements. [27] The Compton effect can be understood as high-energy photons scattering in-elastically off individual electrons, [26] when the incoming photon gives part of its energy to the electron, then the scattered photon has lower energy and lower frequency and longer wavelength according to the Planck relation: [28]
which gives the energy E of the photon in terms of frequency f or ν, and Planck's constant h (6.626×10−34 J⋅s = 4.136×10−15 eV⋅s). [29] The wavelength change in such scattering depends only upon the angle of scattering for a given target particle. [28] [30]
This was an important discovery during the 1920s when the particle (photon) nature of light suggested by the photoelectric effect was still being debated, the Compton experiment gave clear and independent evidence of particle-like behavior. [25] [30]
The formula describing the Compton shift in the wavelength due to scattering is given by:
where λf is the final wavelength of the photon after scattering, λi is the initial wavelength of the photon before scattering, h is the Planck constant, me is the rest mass of the electron, c is the speed of light and θ is the scattering angle of the photon. [25] [30]
The coefficient of (1 − cos θ) is known as the Compton wavelength, but is in fact a proportionality constant for the wavelength shift. [31] The collision causes the photon wavelength to increase by somewhere between 0 (for a scattering angle of 0°) and twice the Compton wavelength (for a scattering angle of 180°). [32]
Thomson scattering is the classical elastic quantitative interpretation of the scattering process, [26] and this can be seen to happen with lower, mid-energy, photons. The classical theory of an electromagnetic wave scattered by charged particles, cannot explain low intensity shifts in wavelength.
Inverse Compton scattering takes place when the electron is moving, and has sufficient kinetic energy compared to the photon. In this case net energy may be transferred from the electron to the photon. The inverse Compton effect is seen in astrophysics when a low energy photon (e.g. of the cosmic microwave background) bounces off a high energy (relativistic) electron. Such electrons are produced in supernovae and active galactic nuclei. [26]
If a charged particle such as an electron is accelerated – this can be acceleration in a straight line or motion in a curved path – electromagnetic radiation is emitted by the particle. Within electron storage rings and circular particle accelerators known as synchrotrons, electrons are bent in a circular path and emit X-rays typically. This radially emitted () electromagnetic radiation when charged particles are accelerated is called synchrotron radiation. [33] It is produced in synchrotrons using bending magnets, undulators and/or wigglers.[ citation needed ]
The first observation came at the General Electric Research Laboratory in Schenectady, New York, on April 24, 1947, in the synchrotron built by a team of Herb Pollack to test the idea of phase-stability principle for RF accelerators. [note 8] When the technician was asked to look around the shielding with a large mirror to check for sparking in the tube, he saw a bright arc of light coming from the electron beam. Robert Langmuir is credited as recognizing it as synchrotron radiation or, as he called it, "Schwinger radiation" after Julian Schwinger. [34]
Classically, the radiated power P from an accelerated electron is:
this comes from the Larmor formula; where ε0 is the vacuum permittivity, e is elementary charge, c is the speed of light, and a is the acceleration. Within a circular orbit such as a storage ring, the non-relativistic case is simply the centripetal acceleration. However within a storage ring the acceleration is highly relativistic, and can be obtained as follows:
where v is the circular velocity, r is the radius of the circular accelerator, m is the rest mass of the charged particle, p is the momentum, τ is the Proper time (t/γ), and γ is the Lorentz factor. Radiated power then becomes:
For highly relativistic particles, such that velocity becomes nearly constant, the factor γ4 becomes the dominant variable in determining loss rate, which means that the loss scales as the fourth power of the particle energy γmc2; and the inverse dependence of synchrotron radiation loss on radius argues for building the accelerator as large as possible. [33]
Stanford Linear Accelerator Center is located near Stanford University, California. [35] Construction began on the 3-kilometre-long (2 mi) linear accelerator in 1962 and was completed in 1967, and in 1968 the first experimental evidence of quarks was discovered resulting in the 1990 Nobel Prize in Physics, shared by SLAC's Richard Taylor and Jerome I. Friedman and Henry Kendall of MIT. [36] The accelerator came with a 20 GeV capacity for the electron acceleration, and while similar to Rutherford's scattering experiment, that experiment operated with alpha particles at only 7 MeV. In the SLAC case the incident particle was an electron and the target a proton, and due to the short wavelength of the electron (due to its high energy and momentum) it was able to probe into the proton. [35] The Stanford Positron Electron Asymmetric Ring (SPEAR) addition to the SLAC made further such discoveries possible, leading to the discovery in 1974 of the J/psi particle, which consists of a paired charm quark and anti-charm quark, and another Nobel Prize in Physics in 1976. This was followed up with Martin Perl's announcement of the discovery of the tau lepton, for which he shared the 1995 Nobel Prize in Physics. [36]
The SLAC aims to be a premier accelerator laboratory, [37] to pursue strategic programs in particle physics, particle astrophysics and cosmology, as well as the applications in discovering new drugs for healing, new materials for electronics and new ways to produce clean energy and clean up the environment. [38] Under the directorship of Chi-Chang Kao the SLAC's fifth director (as of November 2012), a noted X-ray scientist who came to SLAC in 2010 to serve as associate laboratory director for the Stanford Synchrotron Radiation Lightsource. [39]
Other scientific programs run at SLAC include: [40]
RIKEN was founded in 1917 as a private research foundation in Tokyo, and is Japan's largest comprehensive research institution. Having grown rapidly in size and scope, it is today renowned for high-quality research in a diverse range of scientific disciplines, and encompasses a network of world-class research centers and institutes across Japan. [41]
The RIKEN RI Beam Factory, otherwise known as the RIKEN Nishina Centre (for Accelerator-Based Science), is a cyclotron-based research facility which began operating in 2007; 70 years after the first in Japanese cyclotron, from Dr. Yoshio Nishina whose name is given to the facility. [42]
As of 2006, the facility has a world-class heavy-ion accelerator complex. This consists of a K540-MeV ring cyclotron (RRC) and two different injectors: a variable-frequency heavy-ion linac (RILAC) and a K70-MeV AVF cyclotron (AVF). It has a projectile-fragment separator (RIPS) which provides RI (Radioactive Isotope) beams of less than 60 amu, the world's most intense light-atomic-mass RI beams. [43]
Overseen by the Nishina Centre, the RI Beam Factory is utilized by users worldwide promoting research in nuclear, particle and hadron physics. This promotion of accelerator applications research is an important mission of the Nishina Centre, and implements the use of both domestic and oversea accelerator facilities. [44]
The SCRIT (Self-Confining Radioactive isotope Ion Target) facility, is currently under construction at the RIKEN RI beam factory (RIBF) in Japan. The project aims to investigate short-lived nuclei through the use of an elastic electron scattering test of charge density distribution, with initial testing done with stable nuclei. With the first electron scattering off unstable Sn isotopes to take place in 2014. [45]
The investigation of short-lived radioactive nuclei (RI) by means of electron scattering has never been performed because of an inability to make these nuclei a target, [46] now with the advent of a novel self-confining RI technique at the world's first facility dedicated to the study of the structure of short-lived nuclei by electron scattering this research becomes possible. The principle of the technique is based around the ion trapping phenomenon which is observed at electron storage ring facilities, [note 9] which has an adverse effect on the performance of electron storage rings. [45]
The novel idea to be employed at SCRIT is to use the ion trapping to allow short-lived RI's to be made a target, as trapped ions on the electron beam, for the scattering experiments. This idea was first given a proof-of-principle study using the electron storage ring of Kyoto University, KSR; this was done using a stable nucleus of 133Cs as a target in an experiment of 120MeV electron beam energy, 75mA typical stored beam current and a 100 seconds beam lifetime. The results of this study were favorable with elastically scattered electrons from the trapped Cs being clearly visible. [45]
Page 574 : Il résulte donc de ces trois essais, que l'action répulsive que les deux balles électrifées de la même nature d'électricité exercent l'une sur l'autre, suit la raison inverse du carré des distances.
Translation : It follows therefore from these three tests, that the repulsive force that the two balls – [that were] electrified with the same kind of electricity – exert on each other, follows the inverse proportion of the square of the distance.In – Coulomb (1785b) "Second mémoire sur l’électricité et le magnétisme", Histoire de l’Académie Royale des Sciences, pages 578–611. – Coulomb showed that oppositely charged bodies obey an inverse-square law of attraction.
In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields. The Lorentz force, on the other hand, is a physical effect that occurs in the vicinity of electrically neutral, current-carrying conductors causing moving electrical charges to experience a magnetic force.
A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light measured in vacuum. The photon belongs to the class of boson particles.
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention.
Compton scattering is the quantum theory of high frequency photons scattering following an interaction with a charged particle, usually an electron. Specifically, when the photon hits electrons, it releases loosely bound electrons from the outer valence shells of atoms or molecules.
Synchrotron radiation is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.
A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons.
Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is the low-energy limit of Compton scattering: the particle's kinetic energy and photon frequency do not change as a result of the scattering. This limit is valid as long as the photon energy is much smaller than the mass energy of the particle: , or equivalently, if the wavelength of the light is much greater than the Compton wavelength of the particle.
Transition radiation (TR) is a form of electromagnetic radiation emitted when a charged particle passes through inhomogeneous media, such as a boundary between two different media. This is in contrast to Cherenkov radiation, which occurs when a charged particle passes through a homogeneous dielectric medium at a speed greater than the phase velocity of electromagnetic waves in that medium.
In particle physics, the Klein–Nishina formula gives the differential cross section of photons scattered from a single free electron, calculated in the lowest order of quantum electrodynamics. It was first derived in 1928 by Oskar Klein and Yoshio Nishina, constituting one of the first successful applications of the Dirac equation. The formula describes both the Thomson scattering of low energy photons and the Compton scattering of high energy photons, showing that the total cross section and expected deflection angle decrease with increasing photon energy.
A free-electron laser (FEL) is a fourth generation light source producing extremely brilliant and short pulses of radiation. An FEL functions much as a laser but employs relativistic electrons as a gain medium instead of using stimulated emission from atomic or molecular excitations. In an FEL, a bunch of electrons passes through a magnetic structure called an undulator or wiggler to generate radiation, which re-interacts with the electrons to make them emit coherently, exponentially increasing its intensity.
The classical electron radius is a combination of fundamental physical quantities that define a length scale for problems involving an electron interacting with electromagnetic radiation. It links the classical electrostatic self-interaction energy of a homogeneous charge distribution to the electron's relativistic mass-energy. According to modern understanding, the electron is a point particle with a point charge and no spatial extent. Nevertheless, it is useful to define a length that characterizes electron interactions in atomic-scale problems. The classical electron radius is given as
The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle. It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons.
In electrodynamics, the Larmor formula is used to calculate the total power radiated by a nonrelativistic point charge as it accelerates. It was first derived by J. J. Larmor in 1897, in the context of the wave theory of light.
In the physics of electromagnetism, the Abraham–Lorentz force is the reaction force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.
The mass-to-charge ratio (m/Q) is a physical quantity relating the mass (quantity of matter) and the electric charge of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrodynamics of charged particles, e.g. in electron optics and ion optics.
The gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field. In SI units, the non-relativistic gyroradius is given by where is the mass of the particle, is the component of the velocity perpendicular to the direction of the magnetic field, is the electric charge of the particle, and is the magnetic field flux density.
Cyclotron resonance describes the interaction of external forces with charged particles experiencing a magnetic field, thus moving on a circular path. It is named after the cyclotron, a cyclic particle accelerator that utilizes an oscillating electric field tuned to this resonance to add kinetic energy to charged particles.
In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.
Tests of relativistic energy and momentum are aimed at measuring the relativistic expressions for energy, momentum, and mass. According to special relativity, the properties of particles moving approximately at the speed of light significantly deviate from the predictions of Newtonian mechanics. For instance, the speed of light cannot be reached by massive particles.
Non-linear inverse Compton scattering (NICS), also known as non-linear Compton scattering and multiphoton Compton scattering, is the scattering of multiple low-energy photons, given by an intense electromagnetic field, in a high-energy photon during the interaction with a charged particle, in many cases an electron. This process is an inverted variant of Compton scattering since, contrary to it, the charged particle transfers its energy to the outgoing high-energy photon instead of receiving energy from an incoming high-energy photon. Furthermore, differently from Compton scattering, this process is explicitly non-linear because the conditions for multiphoton absorption by the charged particle are reached in the presence of a very intense electromagnetic field, for example, the one produced by high-intensity lasers.
{{cite book}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link)