R-matrix

Last updated

The term R-matrix has several meanings, depending on the field of study.

Contents

The term R-matrix is used in connection with the Yang–Baxter equation. This is an equation which was first introduced in the field of statistical mechanics, taking its name from independent work of C. N. Yang and R. J. Baxter. The classical R-matrix arises in the definition of the classical YangBaxter equation. [1]

In quasitriangular Hopf algebra, the R-matrix is a solution of the Yang–Baxter equation.

The numerical modeling of diffraction gratings in optical science can be performed using the R-matrix propagation algorithm. [2]

R-matrix method in quantum mechanics

There is a method in computational quantum mechanics for studying scattering known as the R-matrix. This method was originally formulated for studying resonances in nuclear scattering by Wigner and Eisenbud. [3] Using that work as a basis, an R-matrix method was developed for electron, positron and photon scattering by atoms. [4] This approach was later adapted for electron, positron and photon scattering by molecules. [5] [6] [7]

R-matrix method is used in UKRmol [8] and UKRmol+ [9] code suits. The user-friendly software Quantemol Electron Collisions (Quantemol-EC) and its predecessor Quantemol-N are based on UKRmol/UKRmol+ and employ MOLPRO package for electron configuration calculations.

See also

Related Research Articles

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

<span class="mw-page-title-main">Positronium</span> Bound state of an electron and positron

Positronium (Ps) is a system consisting of an electron and its anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two particles annihilate each other to predominantly produce two or three gamma-rays, depending on the relative spin states. The energy levels of the two particles are similar to that of the hydrogen atom. However, because of the reduced mass, the frequencies of the spectral lines are less than half of those for the corresponding hydrogen lines.

A timeline of atomic and subatomic physics.

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

<span class="mw-page-title-main">Scattering</span> Range of physical processes

Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called diffuse reflections and unscattered reflections are called specular (mirror-like) reflections. Originally, the term was confined to light scattering. As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" in 1800. John Tyndall, a pioneer in light scattering research, noted the connection between light scattering and acoustic scattering in the 1870s. Near the end of the 19th century, the scattering of cathode rays and X-rays was observed and discussed. With the discovery of subatomic particles and the development of quantum theory in the 20th century, the sense of the term became broader as it was recognized that the same mathematical frameworks used in light scattering could be applied to many other phenomena.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.

<span class="mw-page-title-main">Electron excitation</span> Transfer of a bound electron to a more energetic state

Electron excitation is the transfer of a bound electron to a more energetic, but still bound state. This can be done by photoexcitation (PE), where the electron absorbs a photon and gains all its energy or by collisional excitation (CE), where the electron receives energy from a collision with another, energetic electron. Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation). This is accompanied by the emission of a photon or by a transfer of energy to another particle. The energy released is equal to the difference in energy levels between the electron energy states.

<span class="mw-page-title-main">Two-photon physics</span> Branch of particle physics concerning interactions between two photons

Two-photon physics, also called gamma–gamma physics, is a branch of particle physics that describes the interactions between two photons. Normally, beams of light pass through each other unperturbed. Inside an optical material, and if the intensity of the beams is high enough, the beams may affect each other through a variety of non-linear effects. In pure vacuum, some weak scattering of light by light exists as well. Also, above some threshold of this center-of-mass energy of the system of the two photons, matter can be created.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). QED was so successful and accurately predictive that efforts were made to apply the same basic concepts for the other forces of nature. By the late 1970s, these efforts successfully utilized gauge theory in the strong nuclear force and weak nuclear force, producing the modern Standard Model of particle physics.

In physics, a Feshbach resonance can occur upon collision of two slow atoms, when they temporarily stick together forming an unstable compound with short lifetime. It is a feature of many-body systems in which a bound state is achieved if the coupling(s) between at least one internal degree of freedom and the reaction coordinates, which lead to dissociation, vanish. The opposite situation, when a bound state is not formed, is a shape resonance. It is named after Herman Feshbach, a physicist at MIT.

Delbrück scattering, the deflection of high-energy photons in the Coulomb field of nuclei as a consequence of vacuum polarization, was observed in 1975. The related process of the scattering of light by light, also a consequence of vacuum polarization, was not observed until 1998. In both cases, it is a process described by quantum electrodynamics.

<span class="mw-page-title-main">Positronium hydride</span> Exotic molecule consisting of a hydrogen atom bound to a positronium atom

Positronium hydride, or hydrogen positride is an exotic molecule consisting of a hydrogen atom bound to an exotic atom of positronium. Its formula is PsH. It was predicted to exist in 1951 by A Ore, and subsequently studied theoretically, but was not observed until 1990. R. Pareja, R. Gonzalez from Madrid trapped positronium in hydrogen laden magnesia crystals. The trap was prepared by Yok Chen from the Oak Ridge National Laboratory. In this experiment the positrons were thermalized so that they were not traveling at high speed, and they then reacted with H ions in the crystal. In 1992 it was created in an experiment done by David M. Schrader and F.M. Jacobsen and others at the Aarhus University in Denmark. The researchers made the positronium hydride molecules by firing intense bursts of positrons into methane, which has the highest density of hydrogen atoms. Upon slowing down, the positrons were captured by ordinary electrons to form positronium atoms which then reacted with hydrogen atoms from the methane.

Quantemol Ltd is based in University College London initiated by Professor Jonathan Tennyson FRS and Dr. Daniel Brown in 2004. The company initially developed a unique software tool, Quantemol-N, which provides full accessibility to the highly sophisticated UK molecular R-matrix codes, used to model electron polyatomic molecule interactions. Since then Quantemol has widened to further types of simulation, with plasmas and industrial plasma tools, in Quantemol-VT in 2013 and launched in 2016 a sustainable database Quantemol-DB, representing the chemical and radiative transport properties of a wide range of plasmas.

<span class="mw-page-title-main">Schwinger limit</span> Energy scale at which vacuum effects become important

In quantum electrodynamics (QED), the Schwinger limit is a scale above which the electromagnetic field is expected to become nonlinear. The limit was first derived in one of QED's earliest theoretical successes by Fritz Sauter in 1931 and discussed further by Werner Heisenberg and his student Hans Heinrich Euler. The limit, however, is commonly named in the literature for Julian Schwinger, who derived the leading nonlinear corrections to the fields and calculated the rate of electron–positron pair production in a strong electric field. The limit is typically reported as a maximum electric field or magnetic field before nonlinearity for the vacuum of

<span class="mw-page-title-main">Breit–Wheeler process</span> Electron-positron production from two photons

The Breit–Wheeler process or Breit–Wheeler pair production is a proposed physical process in which a positron–electron pair is created from the collision of two photons. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e+ e where γ and γ′ are two light quanta.

<span class="mw-page-title-main">Jiří Horáček</span> Czech physicist

Prof. RNDr. Jiří Horáček, DrSc. is a Czech theoretical physicist, professor at Charles University in Prague, where he works at the Institute of Theoretical Physics, which is a part of the Faculty of Mathematics and Physics. He was the director of the Institute in 2003–2011. He works in the field of theoretical atomic and molecular physics with a special focus on numerical solutions to integral and differential equations of scattering theory and on numerical analytic continuation methods localizing the poles of scattering quantities related to resonances.

<span class="mw-page-title-main">CCPForge</span>

The Collaborative Computational Projects (CCP) group was responsible for the development of CCPForge, which is a software development tool produced through collaborations by the CCP community. CCPs allow experts in computational research to come together and develop scientific software which can be applied to numerous research fields. It is used as a tool in many research and development areas, and hosts a variety of projects. Every CCP project is the result of years of valuable work by computational researchers.

<span class="mw-page-title-main">Collaborative Computational Project Q</span>

Collaborative Computational Project Q (CCPQ) was developed in order to provide software which uses theoretical techniques to catalogue collisions between electrons, positrons or photons and atomic/molecular targets. The 'Q' stands for quantum dynamics. This project is accessible via the CCPForge website, which contains numerous other projects such as CCP2 and CCP4. The scope has increased to include atoms and molecules in strong laser fields, low-energy interactions of antihydrogen with small atoms and molecules, cold atoms, Bose–Einstein condensates and optical lattices. CCPQ gives essential information on the reactivity of various molecules, and contains two community codes R-matrix suite and MCTDH wavepacket dynamics.

The UK Molecular R-Matrix codes are a set of software routines used to calculate the effects of collision of electrons with atoms and molecules. The R-matrix method is used in computational quantum mechanics to study scattering of positrons and electrons by atomic and molecular targets. The fundamental idea was originally introduced by Eugene Wigner and Leonard Eisenbud in the 1940s. The method uses the fixed nuclei approximation, where the molecule's nuclei are considered fixed when collision occurs and the electronic part of the problem is solved. This information is then plugged into calculations which take into account nuclear motion. The UK Molecular R-Matrix codes were developed by the Collaborative Computational Project Q (CCPQ).

References

  1. Kupershmidt, Boris A. (1999). "What a Classical r-Matrix Really Is". Journal of Nonlinear Mathematical Physics. Informa UK Limited. 6 (4): 448–488. arXiv: math/9910188 . Bibcode:1999JNMP....6..448K. doi:10.2991/jnmp.1999.6.4.5. ISSN   1402-9251.
  2. Li, Lifeng (1994-11-01). "Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings". Journal of the Optical Society of America A. The Optical Society. 11 (11): 2829–2836. Bibcode:1994JOSAA..11.2829L. doi:10.1364/josaa.11.002829. ISSN   1084-7529.
  3. Wigner, E. P.; Eisenbud, L. (1947-07-01). "Higher Angular Momenta and Long Range Interaction in Resonance Reactions". Physical Review. American Physical Society (APS). 72 (1): 29–41. Bibcode:1947PhRv...72...29W. doi:10.1103/physrev.72.29. ISSN   0031-899X.
  4. Burke, P G; Hibbert, A; Robb, W D (1971). "Electron scattering by complex atoms". Journal of Physics B: Atomic and Molecular Physics. IOP Publishing. 4 (2): 153–161. Bibcode:1971JPhB....4..153B. doi:10.1088/0022-3700/4/2/002. ISSN   0022-3700.
  5. Schneider, Barry (1975). "R-matrix theory for electron-atom and electron-molecule collisions using analytic basis set expansions". Chemical Physics Letters. Elsevier BV. 31 (2): 237–241. Bibcode:1975CPL....31..237S. doi:10.1016/0009-2614(75)85010-x. ISSN   0009-2614.
  6. Schneider, Barry I. (1975-06-01). "R-matrix theory for electron-molecule collisions using analytic basis set expansions. II. Electron-H2 scattering in the static-exchange model". Physical Review A. American Physical Society (APS). 11 (6): 1957–1962. Bibcode:1975PhRvA..11.1957S. doi:10.1103/physreva.11.1957. ISSN   0556-2791.
  7. C J Gillan, J Tennyson, and P G Burke, in Computational Methods for Electron-Molecule Collisions, eds. W M Huo and F A Gianturco, (Plenum, New York, 1995), p. 239
  8. Carr, J.M.; Galiatsatos, P.G.; Gorfinkiel, J.D.; Harvey, A.G.; Lysaght, M.A.; Madden, D.; Mašín, Z.; Plummer, M.; Tennyson, J. (2012). "The UKRmol program suite". Eur. Phys. J. D (66): 58. doi:10.1140/epjd/e2011-20653-6.
  9. Mašín, Zdeněk; Benda, Jakub; Gorfinkiel, Jimena D.; Harvey, Alex G.; Tennyson, Jonathan (2019-12-07). "UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method". Computer Physics Communications. 249: 107092. arXiv: 1908.03018 . doi:10.1016/j.cpc.2019.107092.