Elastic collision

Last updated
As long as black-body radiation (not shown) doesn't escape a system, atoms in thermal agitation undergo essentially elastic collisions. On average, two atoms rebound from each other with the same kinetic energy as before a collision. Five atoms are colored red so their paths of motion are easier to see. Translational motion.gif
As long as black-body radiation (not shown) doesn't escape a system, atoms in thermal agitation undergo essentially elastic collisions. On average, two atoms rebound from each other with the same kinetic energy as before a collision. Five atoms are colored red so their paths of motion are easier to see.

In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise, or potential energy.

Contents

During the collision of small objects, kinetic energy is first converted to potential energy associated with a repulsive or attractive force between the particles (when the particles move against this force, i.e. the angle between the force and the relative velocity is obtuse), then this potential energy is converted back to kinetic energy (when the particles move with this force, i.e. the angle between the force and the relative velocity is acute).

Collisions of atoms are elastic, for example Rutherford backscattering.

A useful special case of elastic collision is when the two bodies have equal mass, in which case they will simply exchange their momenta.

The molecules —as distinct from atoms—of a gas or liquid rarely experience perfectly elastic collisions because kinetic energy is exchanged between the molecules’ translational motion and their internal degrees of freedom with each collision. At any instant, half the collisions are, to a varying extent, inelastic collisions (the pair possesses less kinetic energy in their translational motions after the collision than before), and half could be described as “super-elastic” (possessing more kinetic energy after the collision than before). Averaged across the entire sample, molecular collisions can be regarded as essentially elastic as long as Planck's law forbids energy from being carried away by black-body photons.

In the case of macroscopic bodies, perfectly elastic collisions are an ideal never fully realized, but approximated by the interactions of objects such as billiard balls.

When considering energies, possible rotational energy before and/or after a collision may also play a role.

Equations

One-dimensional Newtonian

Professor Walter Lewin explaining one-dimensional elastic collisions

In any collision without an external force, momentum is conserved; but in an elastic collision, kinetic energy is also conserved. [1] Consider particles A and B with masses mA, mB, and velocities vA1, vB1 before collision, vA2, vB2 after collision. The conservation of momentum before and after the collision is expressed by: [1]

Likewise, the conservation of the total kinetic energy is expressed by: [1]

These equations may be solved directly to find when are known: [2]

Alternatively the final velocity of a particle, v2 (vA2 or vB2) is expressed by:

Where:

If both masses are the same, we have a trivial solution: This simply corresponds to the bodies exchanging their initial velocities with each other. [2]

As can be expected, the solution is invariant under adding a constant to all velocities (Galilean relativity), which is like using a frame of reference with constant translational velocity. Indeed, to derive the equations, one may first change the frame of reference so that one of the known velocities is zero, determine the unknown velocities in the new frame of reference, and convert back to the original frame of reference.

Examples

Before collision
Ball A: mass = 3 kg, velocity = 4 m/s
Ball B: mass = 5 kg, velocity = 0 m/s
After collision
Ball A: velocity = −1 m/s
Ball B: velocity = 3 m/s

Another situation:

Elastic collision of unequal masses. Elastischer stoss3.gif
Elastic collision of unequal masses.

The following illustrate the case of equal mass, .

Elastic collision of equal masses Elastischer stoss.gif
Elastic collision of equal masses
Elastic collision of masses in a system with a moving frame of reference Elastischer stoss2.gif
Elastic collision of masses in a system with a moving frame of reference

In the limiting case where is much larger than , such as a ping-pong paddle hitting a ping-pong ball or an SUV hitting a trash can, the heavier mass hardly changes velocity, while the lighter mass bounces off, reversing its velocity plus approximately twice that of the heavy one. [3]

In the case of a large , the value of is small if the masses are approximately the same: hitting a much lighter particle does not change the velocity much, hitting a much heavier particle causes the fast particle to bounce back with high speed. This is why a neutron moderator (a medium which slows down fast neutrons, thereby turning them into thermal neutrons capable of sustaining a chain reaction) is a material full of atoms with light nuclei which do not easily absorb neutrons: the lightest nuclei have about the same mass as a neutron.

Derivation of solution

To derive the above equations for rearrange the kinetic energy and momentum equations:

Dividing each side of the top equation by each side of the bottom equation, and using gives:

That is, the relative velocity of one particle with respect to the other is reversed by the collision.

Now the above formulas follow from solving a system of linear equations for regarding as constants: Once is determined, can be found by symmetry.

Center of mass frame

With respect to the center of mass, both velocities are reversed by the collision: a heavy particle moves slowly toward the center of mass, and bounces back with the same low speed, and a light particle moves fast toward the center of mass, and bounces back with the same high speed.

The velocity of the center of mass does not change by the collision. To see this, consider the center of mass at time before collision and time after collision:

Hence, the velocities of the center of mass before and after collision are:

The numerators of and are the total momenta before and after collision. Since momentum is conserved, we have

One-dimensional relativistic

According to special relativity, where p denotes momentum of any particle with mass, v denotes velocity, and c is the speed of light.

In the center of momentum frame where the total momentum equals zero,

Here represent the rest masses of the two colliding bodies, represent their velocities before collision, their velocities after collision, their momenta, is the speed of light in vacuum, and denotes the total energy, the sum of rest masses and kinetic energies of the two bodies.

Since the total energy and momentum of the system are conserved and their rest masses do not change, it is shown that the momentum of the colliding body is decided by the rest masses of the colliding bodies, total energy and the total momentum. Relative to the center of momentum frame, the momentum of each colliding body does not change magnitude after collision, but reverses its direction of movement.

Comparing with classical mechanics, which gives accurate results dealing with macroscopic objects moving much slower than the speed of light, total momentum of the two colliding bodies is frame-dependent. In the center of momentum frame, according to classical mechanics,

This agrees with the relativistic calculation despite other differences.

One of the postulates in Special Relativity states that the laws of physics, such as conservation of momentum, should be invariant in all inertial frames of reference. In a general inertial frame where the total momentum could be arbitrary,

We can look at the two moving bodies as one system of which the total momentum is the total energy is and its velocity is the velocity of its center of mass. Relative to the center of momentum frame the total momentum equals zero. It can be shown that is given by: Now the velocities before the collision in the center of momentum frame and are:

When and

Therefore, the classical calculation holds true when the speed of both colliding bodies is much lower than the speed of light (~300,000 kilometres per second).

Relativistic derivation using hyperbolic functions

Using the so-called parameter of velocity (usually called the rapidity),

we get

Relativistic energy and momentum are expressed as follows:

Equations sum of energy and momentum colliding masses and (velocities correspond to the velocity parameters ), after dividing by adequate power are as follows:

and dependent equation, the sum of above equations:

subtract squares both sides equations "momentum" from "energy" and use the identity after simplifying we get:

for non-zero mass, using the hyperbolic trigonometric identity we get:

as functions is even we get two solutions: from the last equation, leading to a non-trivial solution, we solve and substitute into the dependent equation, we obtain and then we have:

It is a solution to the problem, but expressed by the parameters of velocity. Return substitution to get the solution for velocities is:

Substitute the previous solutions and replace: and after long transformation, with substituting: we get:

Two-dimensional

For the case of two non-spinning colliding bodies in two dimensions, the motion of the bodies is determined by the three conservation laws of momentum, kinetic energy and angular momentum. The overall velocity of each body must be split into two perpendicular velocities: one tangent to the common normal surfaces of the colliding bodies at the point of contact, the other along the line of collision. Since the collision only imparts force along the line of collision, the velocities that are tangent to the point of collision do not change. The velocities along the line of collision can then be used in the same equations as a one-dimensional collision. The final velocities can then be calculated from the two new component velocities and will depend on the point of collision. Studies of two-dimensional collisions are conducted for many bodies in the framework of a two-dimensional gas.

Two-dimensional elastic collision Elastischer stoss 2D.gif
Two-dimensional elastic collision

In a center of momentum frame at any time the velocities of the two bodies are in opposite directions, with magnitudes inversely proportional to the masses. In an elastic collision these magnitudes do not change. The directions may change depending on the shapes of the bodies and the point of impact. For example, in the case of spheres the angle depends on the distance between the (parallel) paths of the centers of the two bodies. Any non-zero change of direction is possible: if this distance is zero the velocities are reversed in the collision; if it is close to the sum of the radii of the spheres the two bodies are only slightly deflected.

Assuming that the second particle is at rest before the collision, the angles of deflection of the two particles, and , are related to the angle of deflection in the system of the center of mass by [4] The magnitudes of the velocities of the particles after the collision are:

Two-dimensional collision with two moving objects

The final x and y velocities components of the first ball can be calculated as: [5] where v1 and v2 are the scalar sizes of the two original speeds of the objects, m1 and m2 are their masses, θ1 and θ2 are their movement angles, that is, (meaning moving directly down to the right is either a −45° angle, or a 315° angle), and lowercase phi (φ) is the contact angle. (To get the x and y velocities of the second ball, one needs to swap all the '1' subscripts with '2' subscripts.)

This equation is derived from the fact that the interaction between the two bodies is easily calculated along the contact angle, meaning the velocities of the objects can be calculated in one dimension by rotating the x and y axis to be parallel with the contact angle of the objects, and then rotated back to the original orientation to get the true x and y components of the velocities. [6] [7] [8] [9] [10] [11]

In an angle-free representation, the changed velocities are computed using the centers x1 and x2 at the time of contact as where the angle brackets indicate the inner product (or dot product) of two vectors.

Other conserved quantities

In the particular case of particles having equal masses, it can be verified by direct computation from the result above that the scalar product of the velocities before and after the collision are the same, that is Although this product is not an additive invariant in the same way that momentum and kinetic energy are for elastic collisions, it seems that preservation of this quantity can nonetheless be used to derive higher-order conservation laws. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

In mathematics, de Moivre's formula states that for any real number x and integer n it is the case that where i is the imaginary unit. The formula is named after Abraham de Moivre, although he never stated it in his works. The expression cos x + i sin x is sometimes abbreviated to cis x.

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

<span class="mw-page-title-main">Trigonometric substitution</span> Technique of integral evaluation

In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">True anomaly</span> Parameter of Keplerian orbits

In celestial mechanics, true anomaly is an angular parameter that defines the position of a body moving along a Keplerian orbit. It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse.

<span class="mw-page-title-main">Velocity-addition formula</span> Equation used in relativistic physics

In relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light. Such formulas apply to successive Lorentz transformations, so they also relate different frames. Accompanying velocity addition is a kinematic effect known as Thomas precession, whereby successive non-collinear Lorentz boosts become equivalent to the composition of a rotation of the coordinate system and a boost.

In physics and astronomy, Euler's three-body problem is to solve for the motion of a particle that is acted upon by the gravitational field of two other point masses that are fixed in space. It is a particular version of the three-body problem. This version of it is exactly solvable, and yields an approximate solution for particles moving in the gravitational fields of prolate and oblate spheroids. This problem is named after Leonhard Euler, who discussed it in memoirs published in 1760. Important extensions and analyses to the three body problem were contributed subsequently by Joseph-Louis Lagrange, Joseph Liouville, Pierre-Simon Laplace, Carl Gustav Jacob Jacobi, Urbain Le Verrier, William Rowan Hamilton, Henri Poincaré and George David Birkhoff, among others. The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions For convenience, the problem may also be solved by numerical methods, such as Runge–Kutta integration of the equations of motion. The total energy of the moving particle is conserved, but its linear and angular momentum are not, since the two fixed centers can apply a net force and torque. Nevertheless, the particle has a second conserved quantity that corresponds to the angular momentum or to the Laplace–Runge–Lenz vector as limiting cases.

<span class="mw-page-title-main">Pseudorapidity</span> Spatial coordinate used in experimental particle physics

In experimental particle physics, pseudorapidity, , is a commonly used spatial coordinate describing the angle of a particle relative to the beam axis. It is defined as

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

In special relativity, the classical concept of velocity is converted to rapidity to accommodate the limit determined by the speed of light. Velocities must be combined by Einstein's velocity-addition formula. For low speeds, rapidity and velocity are almost exactly proportional but, for higher velocities, rapidity takes a larger value, with the rapidity of light being infinite.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used.

In fluid dynamics, Taylor scraping flow is a type of two-dimensional corner flow occurring when one of the wall is sliding over the other with constant velocity, named after G. I. Taylor.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

References

  1. 1 2 3 Serway & Jewett 2014 , p. 257
  2. 1 2 Serway & Jewett 2014 , p. 258
  3. Serway & Jewett 2014 , pp. 258–259
  4. Landau & Lifshitz 1976 , p.  46
  5. Craver, William E. (13 August 2013). "Elastic Collisions" . Retrieved 4 March 2023.[ self-published source ]
  6. Parkinson, Stephen (1869) "An Elementary Treatise on Mechanics" (4th ed.) p. 197. London. MacMillan
  7. Love, A. E. H. (1897) "Principles of Dynamics" p. 262. Cambridge. Cambridge University Press
  8. Routh, Edward J. (1898) "A Treatise on Dynamics of a Particle" p. 39. Cambridge. Cambridge University Press
  9. Glazebrook, Richard T. (1911) "Dynamics" (2nd ed.) p. 217. Cambridge. Cambridge University Press
  10. Osgood, William F. (1949) "Mechanics" p. 272. London. MacMillan
  11. Stephenson, Reginald J. (1952) "Mechanics and Properties of Matter" p. 40. New York. Wiley
  12. Chliamovitch, G.; Malaspinas, O.; Chopard, B. (2017). "Kinetic theory beyond the Stosszahlansatz". Entropy. 19 (8): 381. Bibcode:2017Entrp..19..381C. doi: 10.3390/e19080381 .

General references