Physical object

Last updated
A bubble of exhaled gas in water Bubble of exhaled gas from scuba diver P8040877.jpg
A bubble of exhaled gas in water

In common usage and classical mechanics, a physical object or physical body (or simply an object or body) is a collection of matter within a defined contiguous boundary in three-dimensional space.[ citation needed ] The boundary surface must be defined and identified by the properties of the material, although it may change over time. The boundary is usually the visible or tangible surface of the object. The matter in the object is constrained (to a greater or lesser degree) to move as one object. The boundary may move in space relative to other objects that it is not attached to (through translation and rotation). An object's boundary may also deform and change over time in other ways.

Contents

Also in common usage, an object is not constrained to consist of the same collection of matter. Atoms or parts of an object may change over time. An object is usually meant to be defined by the simplest representation of the boundary consistent with the observations. However the laws of physics only apply directly to objects that consist of the same collection of matter.

In physics, an object is an identifiable collection of matter, which may be constrained by an identifiable boundary, and may move as a unit by translation or rotation, in 3-dimensional space.

Each object has a unique identity, independent of any other properties. Two objects may be identical, in all properties except position, but still remain distinguishable. In most cases the boundaries of two objects may not overlap at any point in time. The property of identity allows objects to be counted.

Examples of models of physical bodies include, but are not limited to a particle, several interacting smaller bodies (particulate or otherwise), and continuous media.

The common conception of physical objects includes that they have extension in the physical world, although there do exist theories of quantum physics and cosmology which arguably challenge[ how? ] this. In modern physics, "extension" is understood in terms of the spacetime: roughly speaking, it means that for a given moment of time the body has some location in the space (although not necessarily amounting to the abstraction of a point in space and time). A physical body as a whole is assumed to have such quantitative properties as mass, momentum, electric charge, other conserved quantities, and possibly other quantities.

An object with known composition and described in an adequate physical theory is an example of physical system.

In common usage

An object is known by the application of senses. The properties of an object are inferred by learning and reasoning based on the information perceived. Abstractly, an object is a construction of our mind consistent with the information provided by our senses, using Occam's razor.

In common usage an object is the material inside the boundary of an object, in 3-dimensional space. The boundary of an object is a contiguous surface which may be used to determine what is inside, and what is outside an object. An object is a single piece of material, whose extent is determined by a description based on the properties of the material. An imaginary sphere of granite within a larger block of granite would not be considered an identifiable object, in common usage. A fossilized skull encased in a rock may be considered an object because it is possible to determine the extent of the skull based on the properties of the material.

For a rigid body, the boundary of an object may change over time by continuous translation and rotation. For a deformable body the boundary may also be continuously deformed over time in other ways.

An object has an identity. In general two objects with identical properties, other than position at an instance in time, may be distinguished as two objects and may not occupy the same space at the same time (excluding component objects). An object's identity may be tracked using the continuity of the change in its boundary over time. The identity of objects allows objects to be arranged in sets and counted.

The material in an object may change over time. For example, a rock may wear away or have pieces broken off it. The object will be regarded as the same object after the addition or removal of material, if the system may be more simply described with the continued existence of the object, than in any other way. The addition or removal of material may discontinuously change the boundary of the object. The continuation of the object's identity is then based on the description of the system by continued identity being simpler than without continued identity.

For example, a particular car might have all its wheels changed, and still be regarded as the same car.

The identity of an object may not split. If an object is broken into two pieces at most one of the pieces has the same identity. An object's identity may also be destroyed if the simplest description of the system at a point in time changes from identifying the object to not identifying it. Also an object's identity is created at the first point in time that the simplest model of the system consistent with perception identifies it.

An object may be composed of components. A component is an object completely within the boundary of a containing object.

A living thing may be an object, and is distinguished from non-living things by the designation of the latter as inanimate objects. Inanimate objects generally lack the capacity or desire to undertake actions, although humans in some cultures may tend to attribute such characteristics to non-living things. [1]

Classical mechanics

In classical mechanics a physical body is collection of matter having properties including mass, velocity, momentum and energy. The matter exists in a volume of three-dimensional space. This space is its extension.

Interactions between objects are partly described by orientation and external shape.

In continuum mechanics an object may be described as a collection of sub objects, down to an infinitesimal division, which interact with each other by forces that may be described internally by pressure and mechanical stress.

Quantum mechanics

In quantum mechanics an object is a particle or collection of particles. Until measured, a particle does not have a physical position. A particle is defined by a probability distribution of finding the particle at a particular position. There is a limit to the accuracy with which the position and velocity may be measured. A particle or collection of particles is described by a quantum state.

These ideas vary from the common usage understanding of what an object is.

String theory

In particle physics, there is a debate as to whether some elementary particles are not bodies, but are points without extension in physical space within spacetime, or are always extended in at least one dimension of space as in string theory or M theory.

In psychology

In some branches of psychology, depending on school of thought, a physical object has physical properties, as compared to mental objects. In (reductionistic) behaviorism, objects and their properties are the (only) meaningful objects of study. While in the modern day behavioral psychotherapy it is still only the means for goal oriented behavior modifications, in Body Psychotherapy it is not a means only anymore, but its felt sense is a goal of its own. In cognitive psychology, physical bodies as they occur in biology are studied in order to understand the mind, which may not be a physical body, as in functionalist schools of thought.

In philosophy

A physical body is an enduring object that exists throughout a particular trajectory of space and orientation over a particular duration of time, and which is located in the world of physical space (i.e., as studied by physics). This contrasts with abstract objects such as mathematical objects which do not exist at any particular time or place.

Examples are a cloud, a human body, a banana, a billiard ball, a table, or a proton. This is contrasted with abstract objects such as mental objects, which exist in the mental world, and mathematical objects. Other examples that are not physical bodies are emotions, the concept of "justice", a feeling of hatred, or the number "3". In some philosophies, like the idealism of George Berkeley, a physical body is a mental object, but still has extension in the space of a visual field.

See also

Related Research Articles

<span class="mw-page-title-main">Dimension</span> Property of a mathematical space

In physics and mathematics, the dimension of a mathematical space is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on it – for example, both a latitude and longitude are required to locate a point on the surface of a sphere. A two-dimensional Euclidean space is a two-dimensional space on the plane. The inside of a cube, a cylinder or a sphere is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces.

The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region — such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Leonard Susskind said, “The three-dimensional world of ordinary experience––the universe filled with galaxies, stars, planets, houses, boulders, and people––is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

Mechanics is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements or changes of an object's position relative to its environment.

M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity.

<span class="mw-page-title-main">Physics</span> Scientific field of study

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. A scientist who specializes in the field of physics is called a physicist.

Physical science is a branch of natural science that studies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a "physical science", together is called the "physical sciences".

The following outline is provided as an overview of and topical guide to physics:

<span class="mw-page-title-main">Space</span> Framework of distances and directions

Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum known as spacetime. The concept of space is considered to be of fundamental importance to an understanding of the physical universe. However, disagreement continues between philosophers over whether it is itself an entity, a relationship between entities, or part of a conceptual framework.

In physics, string theory is a theory that attempts to merge quantum mechanics with Einstein’s general theory of relativity. The theory puts forth the premise of the material universe being made of tiny one-dimensional “strings”, rather than the more conventional approach in which they are modeled as zero-dimensional point particles. String theory envisions that a string undergoing a particular mode of vibration corresponds to a particle with definite properties such as mass and charge.

In philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly divided into three areas:

<span class="mw-page-title-main">Stress (mechanics)</span> Physical quantity that expresses internal forces in a continuous material

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has dimension of force per area, with SI units of newtons per square meter (N/m2) or pascal (Pa).

The many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of many interacting particles. Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. Many can be anywhere from three to infinity, although three- and four-body systems can be treated by specific means and are thus sometimes separately classified as few-body systems.

In theoretical physics, the anti-de Sitter/conformal field theory correspondence is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

<span class="mw-page-title-main">Absolute space and time</span> Theoretical foundation of Newtonian mechanics

Absolute space and time is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame.

<span class="mw-page-title-main">Point particle</span> Idealised model of a particle in physics

A point particle, ideal particle or point-like particle is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up space. A point particle is an appropriate representation of any object whenever its size, shape, and structure are irrelevant in a given context. For example, from far enough away, any finite-size object will look and behave as a point-like object. Point masses and point charges, discussed below, are two common cases. When a point particle has an additive property, such as mass or charge, it is often represented mathematically by a Dirac delta function.

<span class="mw-page-title-main">Classical mechanics</span> Description of large objects physics

Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. The "classical" in "classical mechanics" does not refer to classical antiquity, as it might in, say, classical architecture. On the contrary, the development of classical mechanics involved substantial change in the methods and philosophy of physics. Instead, the qualifier distinguishes classical mechanics from physics developed after the revolutions of the early 20th century, which revealed limitations of classical mechanics.

<span class="mw-page-title-main">Branches of physics</span> Overview of the branches of physics

Physics is a scientific discipline that seeks to construct and experimentally test theories of the physical universe. These theories vary in their scope and can be organized into several distinct branches, which are outlined in this article.

<span class="mw-page-title-main">Field (physics)</span> Physical quantities taking values at each point in space and time

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

This glossary of physics is a list of definitions of terms and concepts relevant to physics, its sub-disciplines, and related fields, including mechanics, materials science, nuclear physics, particle physics, and thermodynamics. For more inclusive glossaries concerning related fields of science and technology, see Glossary of chemistry terms, Glossary of astronomy, Glossary of areas of mathematics, and Glossary of engineering.

This glossary of engineering terms is a list of definitions about the major concepts of engineering. Please see the bottom of the page for glossaries of specific fields of engineering.

References

  1. Hornborg, Alf (July 23, 2021). "Objects Don't Have Desires: Toward an Anthropology of Technology beyond Anthropomorphism". American Anthropologist . 123 (4): 753–766. doi:10.1111/aman.13628.