Polymer physics is the field of physics that studies polymers, their fluctuations, mechanical properties, as well as the kinetics of reactions involving degradation of polymers and polymerisation of monomers. [1] [2] [3] [4]
While it focuses on the perspective of condensed matter physics, polymer physics was originally a branch of statistical physics. Polymer physics and polymer chemistry are also related to the field of polymer science, which is considered to be the applicative part of polymers.
Polymers are large molecules and thus are very complicated for solving using a deterministic method. Yet, statistical approaches can yield results and are often pertinent, since large polymers (i.e., polymers with many monomers) are describable efficiently in the thermodynamic limit of infinitely many monomers (although the actual size is clearly finite).
Thermal fluctuations continuously affect the shape of polymers in liquid solutions, and modeling their effect requires the use of principles from statistical mechanics and dynamics. As a corollary, temperature strongly affects the physical behavior of polymers in solution, causing phase transitions, melts, and so on.
The statistical approach to polymer physics is based on an analogy between polymer behavior and either Brownian motion or another type of a random walk, the self-avoiding walk. The simplest possible polymer model is presented by the ideal chain, corresponding to a simple random walk. Experimental approaches for characterizing polymers are also common, using polymer characterization methods, such as size exclusion chromatography, viscometry, dynamic light scattering, and Automatic Continuous Online Monitoring of Polymerization Reactions (ACOMP) [5] [6] for determining the chemical, physical, and material properties of polymers. These experimental methods help the mathematical modeling of polymers and give a better understanding of the properties of polymers.
Condensed matter physics |
---|
![]() |
Models of polymer chains are split into two types: "ideal" models, and "real" models. Ideal chain models assume that there are no interactions between chain monomers. This assumption is valid for certain polymeric systems, where the positive and negative interactions between the monomer effectively cancel out. Ideal chain models provide a good starting point for the investigation of more complex systems and are better suited for equations with more parameters.
Interactions between chain monomers can be modelled as excluded volume. This causes a reduction in the conformational possibilities of the chain, and leads to a self-avoiding random walk. Self-avoiding random walks have different statistics to simple random walks.
The statistics of a single polymer chain depends upon the solubility of the polymer in the solvent. For a solvent in which the polymer is very soluble (a "good" solvent), the chain is more expanded, while for a solvent in which the polymer is insoluble or barely soluble (a "bad" solvent), the chain segments stay close to each other. In the limit of a very bad solvent the polymer chain merely collapses to form a hard sphere, while in a good solvent the chain swells in order to maximize the number of polymer-fluid contacts. [12] For this case the radius of gyration is approximated using Flory's mean field approach which yields a scaling for the radius of gyration of:
where is the radius of gyration of the polymer, is the number of bond segments (equal to the degree of polymerization) of the chain and is the Flory exponent.
For good solvent, ; for poor solvent, . Therefore, polymer in good solvent has larger size and behaves like a fractal object. In bad solvent it behaves like a solid sphere.
In the so-called solvent, , which is the result of simple random walk. The chain behaves as if it were an ideal chain.
The quality of solvent depends also on temperature. For a flexible polymer, low temperature may correspond to poor quality and high temperature makes the same solvent good. At a particular temperature called theta (θ) temperature, the solvent behaves as an ideal chain.
The ideal chain model assumes that polymer segments can overlap with each other as if the chain were a phantom chain. In reality, two segments cannot occupy the same space at the same time. This interaction between segments is called the excluded volume interaction.
The simplest formulation of excluded volume is the self-avoiding random walk, a random walk that cannot repeat its previous path. A path of this walk of N steps in three dimensions represents a conformation of a polymer with excluded volume interaction. Because of the self-avoiding nature of this model, the number of possible conformations is significantly reduced. The radius of gyration is generally larger than that of the ideal chain.
Whether a polymer is flexible or not depends on the scale of interest. For example, the persistence length of double-stranded DNA is about 50 nm. Looking at length scale smaller than 50 nm, it behaves more or less like a rigid rod. [13] At length scale much larger than 50 nm, it behaves like a flexible chain.
Reptation is the thermal motion of very long linear, entangled basically macromolecules in polymer melts or concentrated polymer solutions. Derived from the word reptile, reptation suggests the movement of entangled polymer chains as being analogous to snakes slithering through one another. [14] Pierre-Gilles de Gennes introduced (and named) the concept of reptation into polymer physics in 1971 to explain the dependence of the mobility of a macromolecule on its length. Reptation is used as a mechanism to explain viscous flow in an amorphous polymer. [15] [16] Sir Sam Edwards and Masao Doi later refined reptation theory. [17] [18] The consistent theory of thermal motion of polymers was given by Vladimir Pokrovskii [19] . [20] [21] Similar phenomena also occur in proteins. [22]
The study of long chain polymers has been a source of problems within the realms of statistical mechanics since about the 1950s. One of the reasons however that scientists were interested in their study is that the equations governing the behavior of a polymer chain were independent of the chain chemistry. What is more, the governing equation turns out to be a random walk, or diffusive walk, in space. Indeed, the Schrödinger equation is itself a diffusion equation in imaginary time, t' = it.
The first example of a random walk is one in space, whereby a particle undergoes a random motion due to external forces in its surrounding medium. A typical example would be a pollen grain in a beaker of water. If one could somehow "dye" the path the pollen grain has taken, the path observed is defined as a random walk.
Consider a toy problem, of a train moving along a 1D track in the x-direction. Suppose that the train moves either a distance of +b or −b (b is the same for each step), depending on whether a coin lands heads or tails when flipped. Lets start by considering the statistics of the steps the toy train takes (where Si is the ith step taken):
The second quantity is known as the correlation function. The delta is the kronecker delta which tells us that if the indices i and j are different, then the result is 0, but if i = j then the kronecker delta is 1, so the correlation function returns a value of b2. This makes sense, because if i = j then we are considering the same step. Rather trivially then it can be shown that the average displacement of the train on the x-axis is 0;
As stated , so the sum is still 0. It can also be shown, using the same method demonstrated above, to calculate the root mean square value of problem. The result of this calculation is given below
From the diffusion equation it can be shown that the distance a diffusing particle moves in a medium is proportional to the root of the time the system has been diffusing for, where the proportionality constant is the root of the diffusion constant. The above relation, although cosmetically different reveals similar physics, where N is simply the number of steps moved (is loosely connected with time) and b is the characteristic step length. As a consequence we can consider diffusion as a random walk process.
Random walks in space can be thought of as snapshots of the path taken by a random walker in time. One such example is the spatial configuration of long chain polymers.
There are two types of random walk in space: self-avoiding random walks , where the links of the polymer chain interact and do not overlap in space, and pure random walks, where the links of the polymer chain are non-interacting and links are free to lie on top of one another. The former type is most applicable to physical systems, but their solutions are harder to get at from first principles.
By considering a freely jointed, non-interacting polymer chain, the end-to-end vector is
where ri is the vector position of the i-th link in the chain. As a result of the central limit theorem, if N ≫ 1 then we expect a Gaussian distribution for the end-to-end vector. We can also make statements of the statistics of the links themselves;
Using the statistics of the individual links, it is easily shown that
Notice this last result is the same as that found for random walks in time.
Assuming, as stated, that that distribution of end-to-end vectors for a very large number of identical polymer chains is gaussian, the probability distribution has the following form
What use is this to us? Recall that according to the principle of equally likely a priori probabilities, the number of microstates, Ω, at some physical value is directly proportional to the probability distribution at that physical value, viz;
where c is an arbitrary proportionality constant. Given our distribution function, there is a maxima corresponding to R = 0. Physically this amounts to there being more microstates which have an end-to-end vector of 0 than any other microstate. Now by considering
where F is the Helmholtz free energy, and it can be shown that
which has the same form as the potential energy of a spring, obeying Hooke's law.
This result is known as the entropic spring result and amounts to saying that upon stretching a polymer chain you are doing work on the system to drag it away from its (preferred) equilibrium state. An example of this is a common elastic band, composed of long chain (rubber) polymers. By stretching the elastic band you are doing work on the system and the band behaves like a conventional spring, except that unlike the case with a metal spring, all of the work done appears immediately as thermal energy, much as in the thermodynamically similar case of compressing an ideal gas in a piston.
It might at first be astonishing that the work done in stretching the polymer chain can be related entirely to the change in entropy of the system as a result of the stretching. However, this is typical of systems that do not store any energy as potential energy, such as ideal gases. That such systems are entirely driven by entropy changes at a given temperature, can be seen whenever it is the case that are allowed to do work on the surroundings (such as when an elastic band does work on the environment by contracting, or an ideal gas does work on the environment by expanding). Because the free energy change in such cases derives entirely from entropy change rather than internal (potential) energy conversion, in both cases the work done can be drawn entirely from thermal energy in the polymer, with 100% efficiency of conversion of thermal energy to work. In both the ideal gas and the polymer, this is made possible by a material entropy increase from contraction that makes up for the loss of entropy from absorption of the thermal energy, and cooling of the material.
In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.
In polymer chemistry, a random coil is a conformation of polymers where the monomer subunits are oriented randomly while still being bonded to adjacent units. It is not one specific shape, but a statistical distribution of shapes for all the chains in a population of macromolecules. The conformation's name is derived from the idea that, in the absence of specific, stabilizing interactions, a polymer backbone will "sample" all possible conformations randomly. Many unbranched, linear homopolymers — in solution, or above their melting temperatures — assume (approximate) random coils.
The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.
In statistical mechanics, the correlation function is a measure of the order in a system, as characterized by a mathematical correlation function. Correlation functions describe how microscopic variables, such as spin and density, at different positions are related. More specifically, correlation functions measure quantitatively the extent to which microscopic variables fluctuate together, on average, across space and/or time. Keep in mind that correlation doesn’t automatically equate to causation. So, even if there’s a non-zero correlation between two points in space or time, it doesn’t mean there is a direct causal link between them. Sometimes, a correlation can exist without any causal relationship. This could be purely coincidental or due to other underlying factors, known as confounding variables, which cause both points to covary (statistically).
An ideal chain is the simplest model in polymer chemistry to describe polymers, such as nucleic acids and proteins. It assumes that the monomers in a polymer are located at the steps of a hypothetical random walker that does not remember its previous steps. By neglecting interactions among monomers, this model assumes that two monomers can occupy the same location. Although it is simple, its generality gives insight about the physics of polymers.
The worm-like chain (WLC) model in polymer physics is used to describe the behavior of polymers that are semi-flexible: fairly stiff with successive segments pointing in roughly the same direction, and with persistence length within a few orders of magnitude of the polymer length. The WLC model is the continuous version of the Kratky–Porod model.
Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing. The result is an equation for the Gibbs free energy change for mixing a polymer with a solvent. Although it makes simplifying assumptions, it generates useful results for interpreting experiments.
In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm–Bragg model differs by incorporating the ease of propagation (self-replication) with respect to nucleation. It is named for co-discoverers Bruno H. Zimm and J. K. Bragg.
The Kuhn length is a theoretical treatment, developed by Werner Kuhn, in which a real polymer chain is considered as a collection of Kuhn segments each with a Kuhn length . Each Kuhn segment can be thought of as if they are freely jointed with each other. Each segment in a freely jointed chain can randomly orient in any direction without the influence of any forces, independent of the directions taken by other segments. Instead of considering a real chain consisting of bonds and with fixed bond angles, torsion angles, and bond lengths, Kuhn considered an equivalent ideal chain with connected segments, now called Kuhn segments, that can orient in any random direction.
In physics, Langevin dynamics is an approach to the mathematical modeling of the dynamics of molecular systems using the Langevin equation. It was originally developed by French physicist Paul Langevin. The approach is characterized by the use of simplified models while accounting for omitted degrees of freedom by the use of stochastic differential equations. Langevin dynamics simulations are a kind of Monte Carlo simulation.
In quantum optics, the Jaynes–Cummings model is a theoretical model that describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity. It is named after Edwin Thompson Jaynes and Fred Cummings in the 1960s and was confirmed experimentally in 1987.
Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.
Rubber elasticity is the ability of solid rubber to be stretched up to a factor of 10 from its original length, and return to close to its original length upon release. This process can be repeated many times with no apparent degradation to the rubber.
A peculiarity of thermal motion of very long linear macromolecules in entangled polymer melts or concentrated polymer solutions is reptation. Derived from the word reptile, reptation suggests the movement of entangled polymer chains as being analogous to snakes slithering through one another. Pierre-Gilles de Gennes introduced the concept of reptation into polymer physics in 1971 to explain the dependence of the mobility of a macromolecule on its length. Reptation is used as a mechanism to explain viscous flow in an amorphous polymer. Sir Sam Edwards and Masao Doi later refined reptation theory. Similar phenomena also occur in proteins.
In a polymer solution, a theta solvent is a solvent in which polymer coils act like ideal chains, assuming exactly their random walk coil dimensions. Therefore, the Mark–Houwink equation exponent is in a theta solvent. Thermodynamically, the excess chemical potential of mixing between a polymer and a theta solvent is zero.
The BFM is a lattice model for simulating the conformation and dynamics of polymer systems. There are two versions of the BFM used: The earlier version was first introduced by I. Carmesin and Kurt Kremer in 1988, and the later version by J. Scott Shaffer in 1994. Conversion between models is possible.
The term file dynamics is the motion of many particles in a narrow channel.
A polymer is a macromolecule, composed of many similar or identical repeated subunits. Polymers are common in, but not limited to, organic media. They range from familiar synthetic plastics to natural biopolymers such as DNA and proteins. Their unique elongated molecular structure produces unique physical properties, including toughness, viscoelasticity, and a tendency to form glasses and semicrystalline structures. The modern concept of polymers as covalently bonded macromolecular structures was proposed in 1920 by Hermann Staudinger. One sub-field in the study of polymers is polymer physics. As a part of soft matter studies, Polymer physics concerns itself with the study of mechanical properties and focuses on the perspective of condensed matter physics.
Polymer scattering experiments are one of the main scientific methods used in chemistry, physics and other sciences to study the characteristics of polymeric systems: solutions, gels, compounds and more. As in most scattering experiments, it involves subjecting a polymeric sample to incident particles, and studying the characteristics of the scattered particles: angular distribution, intensity polarization and so on. This method is quite simple and straightforward, and does not require special manipulations of the samples which may alter their properties, and hence compromise exact results.
In physics, tensor is an orientational order parameter that describes uniaxial and biaxial nematic liquid crystals and vanishes in the isotropic liquid phase. The tensor is a second-order, traceless, symmetric tensor and is defined by
{{cite web}}
: CS1 maint: url-status (link)A theory based on the snake-like motion by which chains of monomers move in the melt is enhancing our understanding of rheology, diffusion, polymer-polymer welding, chemical kinetics and biotechnology