Polymer characterization

Last updated

Polymer characterization is the analytical branch of polymer science.

Contents

The discipline is concerned with the characterization of polymeric materials on a variety of levels. The characterization typically has as a goal to improve the performance of the material. As such, many characterization techniques should ideally be linked to the desirable properties of the material such as strength, impermeability, thermal stability, and optical properties. [1]

Characterization techniques are typically used to determine molecular mass, molecular structure, molecular morphology, thermal properties, and mechanical properties. [2]

Molecular mass

The molecular mass of a polymer differs from typical molecules, in that polymerization reactions produce a distribution of molecular weights and shapes. The distribution of molecular masses can be summarized by the number-average molecular weight, weight-average molecular weight, and polydispersity. Some of the most common methods for determining these parameters are colligative property measurements, static light scattering techniques, viscometry, and size exclusion chromatography.

Gel permeation chromatography, a type of size exclusion chromatography, is an especially useful technique used to directly determine the molecular weight distribution parameters based on the polymer's hydrodynamic volume. Gel permeation chromatography is often used in combination with multi-angle light scattering (MALS), Low-angle laser light scattering (LALLS) and/or viscometry for an absolute determination (i.e., independent of the chromatographic separation details) of the molecular weight distribution as well as the branching ratio and degree of long chain branching of a polymer, provided a suitable solvent can be found. [3]

Molar mass determination of copolymers is a much more complicated procedure. The complications arise from the effect of solvent on the homopolymers and how this can affect the copolymer morphology. Analysis of copolymers typically requires multiple characterization methods. For instance, copolymers with short chain branching such as linear low-density polyethylene (a copolymer of ethylene and a higher alkene such as hexene or octene) require the use of Analytical Temperature Rising Elution Fractionation (ATREF) techniques. These techniques can reveal how the short chain branches are distributed over the various molecular weights. A more efficient analysis of copolymer molecular mass and composition is possible using GPC combined with a triple-detection system comprising multi-angle light scattering, UV absorption and differential refractometry, if the copolymer is composed of two base polymers that provide different responses to UV and/or refractive index. [4]

Molecular structure

Many of the analytical techniques used to determine the molecular structure of unknown organic compounds are also used in polymer characterization. Spectroscopic techniques such as ultraviolet-visible spectroscopy, infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray diffraction, and mass spectrometry are used to identify common functional groups.

Morphology

Polymer morphology is a microscale property that is largely dictated by the amorphous or crystalline portions of the polymer chains and their influence on each other. Microscopy techniques are especially useful in determining these microscale properties, as the domains created by the polymer morphology are large enough to be viewed using modern microscopy instruments. Some of the most common microscopy techniques used are X-ray diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy, Scanning Electron Microscopy, and Atomic Force Microscopy.

Polymer morphology on a mesoscale (nanometers to micrometers) is particularly important for the mechanical properties of many materials. Transmission Electron Microscopy in combination with staining techniques, but also Scanning Electron Microscopy, Scanning probe microscopy are important tools to optimize the morphology of materials like polybutadiene-polystyrene polymers and many polymer blends.

X-ray diffraction is generally not as powerful for this class of materials as they are either amorphous or poorly crystallized. The Small-angle scattering like Small-angle X-ray scattering (SAXS) can be used to measure the long periods of semicrystalline polymers.

Thermal properties

A true workhorse for polymer characterization is thermal analysis, particularly Differential scanning calorimetry. Changes in the compositional and structural parameters of the material usually affect its melting transitions or glass transitions and these in turn can be linked to many performance parameters. For semicrystalline polymers it is an important method to measure crystallinity. Thermogravimetric analysis can also give an indication of polymer thermal stability and the effects of additives such as flame retardants. Other thermal analysis techniques are typically combinations of the basic techniques and include differential thermal analysis, thermomechanical analysis, dynamic mechanical thermal analysis, and dielectric thermal analysis.

Dynamic mechanical spectroscopy and dielectric spectroscopy are essentially extensions of thermal analysis that can reveal more subtle transitions with temperature as they affect the complex modulus or the dielectric function of the material.

Mechanical properties

The characterization of mechanical properties in polymers typically refers to a measure of the strength, elasticity, viscoelasticity, and anisotropy of a polymeric material. The mechanical properties of a polymer are strongly dependent upon the Van der Waals interactions of the polymer chains, and the ability of the chains to elongate and align in the direction of the applied force. Other phenomena, such as the propensity of polymers to form crazes can impact the mechanical properties. Typically, polymeric materials are characterized as elastomers, plastics, or rigid polymers depending on their mechanical properties. [5]

The tensile strength, yield strength, and Young's modulus are measures of strength and elasticity, and are of particular interest for describing the stress-strain properties of polymeric materials. These properties can be measured through tensile testing. [6] For crystalline or semicrystalline polymers, anisotropy plays a large role in the mechanical properties of the polymer. [7] The crystallinity of the polymer can be measured through differential scanning calorimetry. [8] For amorphous and semicrystalline polymers, as stress is applied, the polymer chains are able to disentangle and align. If the stress is applied in the direction of chain alignment, the polymer chains will exhibit a higher yield stress and strength, as the covalent bonds connecting the backbone of the polymer absorb the stress. However, if the stress is applied normal to the direction of chain alignment, the Van der Waals interactions between chains will primarily be responsible for the mechanical properties and thus, the yield stress will decrease. [9] This would be observable in a stress strain graph found through tensile testing. Sample preparation, including chain orientation within the sample, for tensile tests therefore can play a large role in the observed mechanical properties.

The fracture properties of crystalline and semicrystalline polymers can be evaluated with Charpy impact testing. Charpy tests, which can also be used with alloy systems, are performed by creating a notch in the sample, and then using a pendulum to fracture the sample at the notch. The pendulum’s motion can be used to extrapolate the energy absorbed by the sample to fracture it. Charpy tests can also be used to evaluate the strain rate on the fracture, as measured with changes in the pendulum mass. Typically, only brittle and somewhat ductile polymers are evaluated with Charpy tests. In addition to the fracture energy, the type of break can be visually evaluated, as in whether the break was a total fracture of the sample or whether the sample experienced fracture in only part of the sample, and severely deformed section are still connected. Elastomers are typically not evaluated with Charpy tests due to their high yield strain inhibiting the Charpy test results. [10]

There are many properties of polymeric materials that influence their mechanical properties. As the degree of polymerization goes up, so does the polymer’s strength, as a longer chains have high Van der Waals interactions and chain entanglement. Long polymers can entangle, which leads to a subsequent increase in bulk modulus. [11] Crazes are small cracks that form in a polymer matrix, but which are stopped by small defects in the polymer matrix. These defects are typically made up of a second, low modulus polymer that is dispersed throughout the primary phase. The crazes can increase the strength and decrease the brittleness of a polymer by allowing the small cracks to absorb higher stress and strain without leading to fracture. If crazes are allowed to propagate or coalesce, they can lead to cavitation and fracture in the sample. [12] [13] Crazes can be seen with transmission electron microscopy and scanning electron microscopy, and are typically engineered into a polymeric material during synthesis. Crosslinking, typically seen in thermoset polymers, can also increase the modulus, yield stress, and yield strength of a polymer. [14]

Dynamic mechanical analysis is the most common technique used to characterize viscoelastic behavior common in many polymeric systems. [15] DMA is also another important tool to understand the temperature dependence of polymers’ mechanical behavior. Dynamic mechanical analysis is a characterization technique used to measure storage modulus and glass transition temperature, confirm crosslinking, determine switching temperatures in shape-memory polymers, monitor cures in thermosets, and determine molecular weight. An oscillating force is applied to a polymer sample and the sample’s response is recorded. DMA documents the lag between force applied and deformation recovery in the sample. Viscoelastic samples exhibit a sinusoidal modulus called the dynamic modulus. Both energy recovered and lost are considered during each deformation and described quantitatively by the elastic modulus (E’) and the loss modulus (E’’) respectively. The applied stress and the strain on the sample exhibit a phase difference, ẟ, which is measured over time. A new modulus is calculated each time stress is applied to the material, so DMA is used to study changes in modulus at various temperatures or stress frequencies. [16]

Other techniques include viscometry, rheometry, and pendulum hardness.

Other techniques

Related Research Articles

In condensed matter physics and materials science, an amorphous solid is a solid that lacks the long-range order that is characteristic of a crystal. The terms "glass" and "glassy solid" are sometimes used synonymously with amorphous solid; however, these terms refer specifically to amorphous materials that undergo a glass transition. Examples of amorphous solids include glasses, metallic glasses, and certain types of plastics and polymers.

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer is a substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeating subunits derived from one or more species of monomers. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Transmission electron microscopy</span> Imaging and diffraction using electrons that pass through samples

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a detector such as a scintillator attached to a charge-coupled device or a direct electron detector.

Dynamic mechanical analysis is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature of the material, as well as to identify transitions corresponding to other molecular motions.

Thermal analysis is a branch of materials science where the properties of materials are studied as they change with temperature. Several methods are commonly used – these are distinguished from one another by the property which is measured:

<span class="mw-page-title-main">Copolymer</span> Polymer derived from more than one species of monomer

In polymer chemistry, a copolymer is a polymer derived from more than one species of monomer. The polymerization of monomers into copolymers is called copolymerization. Copolymers obtained from the copolymerization of two monomer species are sometimes called bipolymers. Those obtained from three and four monomers are called terpolymers and quaterpolymers, respectively. Copolymers can be characterized by a variety of techniques such as NMR spectroscopy and size-exclusion chromatography to determine the molecular size, weight, properties, and composition of the material.

Organic semiconductors are solids whose building blocks are pi-bonded molecules or polymers made up by carbon and hydrogen atoms and – at times – heteroatoms such as nitrogen, sulfur and oxygen. They exist in the form of molecular crystals or amorphous thin films. In general, they are electrical insulators, but become semiconducting when charges are injected from appropriate electrodes or are introduced by doping or photoexcitation.

Failure analysis is the process of collecting and analyzing data to determine the cause of a failure, often with the goal of determining corrective actions or liability. According to Bloch and Geitner, ”machinery failures reveal a reaction chain of cause and effect… usually a deficiency commonly referred to as the symptom…”. Failure analysis can save money, lives, and resources if done correctly and acted upon. It is an important discipline in many branches of manufacturing industry, such as the electronics industry, where it is a vital tool used in the development of new products and for the improvement of existing products. The failure analysis process relies on collecting failed components for subsequent examination of the cause or causes of failure using a wide array of methods, especially microscopy and spectroscopy. Nondestructive testing (NDT) methods are valuable because the failed products are unaffected by analysis, so inspection sometimes starts using these methods.

<span class="mw-page-title-main">Characterization (materials science)</span> Study of material structure and properties

Characterization, when used in materials science, refers to the broad and general process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. The scope of the term often differs; some definitions limit the term's use to techniques which study the microscopic structure and properties of materials, while others use the term to refer to any materials analysis process including macroscopic techniques such as mechanical testing, thermal analysis and density calculation. The scale of the structures observed in materials characterization ranges from angstroms, such as in the imaging of individual atoms and chemical bonds, up to centimeters, such as in the imaging of coarse grain structures in metals.

Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature.

Polyanhydrides are a class of biodegradable polymers characterized by anhydride bonds that connect repeat units of the polymer backbone chain. Their main application is in the medical device and pharmaceutical industry. In vivo, polyanhydrides degrade into non-toxic diacid monomers that can be metabolized and eliminated from the body. Owing to their safe degradation products, polyanhydrides are considered to be biocompatible.

<span class="mw-page-title-main">Forensic materials engineering</span>

Forensic materials engineering, a branch of forensic engineering, focuses on the material evidence from crime or accident scenes, seeking defects in those materials which might explain why an accident occurred, or the source of a specific material to identify a criminal. Many analytical methods used for material identification may be used in investigations, the exact set being determined by the nature of the material in question, be it metal, glass, ceramic, polymer or composite. An important aspect is the analysis of trace evidence such as skid marks on exposed surfaces, where contact between dissimilar materials leaves material traces of one left on the other. Provided the traces can be analysed successfully, then an accident or crime can often be reconstructed. Another aim will be to determine the cause of a broken component using the technique of fractography.

Electron-beam processing or electron irradiation (EBI) is a process that involves using electrons, usually of high energy, to treat an object for a variety of purposes. This may take place under elevated temperatures and nitrogen atmosphere. Possible uses for electron irradiation include sterilization, alteration of gemstone colors, and cross-linking of polymers.

<span class="mw-page-title-main">Forensic polymer engineering</span> Study of failure in polymeric products

Forensic polymer engineering is the study of failure in polymeric products. The topic includes the fracture of plastic products, or any other reason why such a product fails in service, or fails to meet its specification. The subject focuses on the material evidence from crime or accident scenes, seeking defects in those materials that might explain why an accident occurred, or the source of a specific material to identify a criminal. Many analytical methods used for polymer identification may be used in investigations, the exact set being determined by the nature of the polymer in question, be it thermoset, thermoplastic, elastomeric or composite in nature.

<span class="mw-page-title-main">Environmental stress cracking</span> Brittle failure of thermoplastic polymers

Environmental Stress Cracking (ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers known at present. According to ASTM D883, stress cracking is defined as "an external or internal crack in a plastic caused by tensile stresses less than its short-term mechanical strength". This type of cracking typically involves brittle cracking, with little or no ductile drawing of the material from its adjacent failure surfaces. Environmental stress cracking may account for around 15-30% of all plastic component failures in service. This behavior is especially prevalent in glassy, amorphous thermoplastics. Amorphous polymers exhibit ESC because of their loose structure which makes it easier for the fluid to permeate into the polymer. Amorphous polymers are more prone to ESC at temperature higher than their glass transition temperature (Tg) due to the increased free volume. When Tg is approached, more fluid can permeate into the polymer chains.

<span class="mw-page-title-main">Polydioctylfluorene</span> Chemical compound

Polydioctylfluorene (PFO) is an organic compound, a polymer of 9,9-dioctylfluorene, with formula (C13H6(C8H17)2)n. It is an electroluminescent conductive polymer that characteristically emits blue light. Like other polyfluorene polymers, it has been studied as a possible material for light-emitting diodes.

<span class="mw-page-title-main">Solid</span> State of matter

Solid is one of the four fundamental states of matter along with liquid, gas, and plasma. The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice, or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae, which compose larger spheroidal structures named spherulites. Polymers can crystallize upon cooling from melting, mechanical stretching or solvent evaporation. Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, with crystallized polymers often called "semi-crystalline". The properties of semi-crystalline polymers are determined not only by the degree of crystallinity, but also by the size and orientation of the molecular chains.

Polymeric materials have widespread application due to their versatile characteristics, cost-effectiveness, and highly tailored production. The science of polymer synthesis allows for excellent control over the properties of a bulk polymer sample. However, surface interactions of polymer substrates are an essential area of study in biotechnology, nanotechnology, and in all forms of coating applications. In these cases, the surface characteristics of the polymer and material, and the resulting forces between them largely determine its utility and reliability. In biomedical applications for example, the bodily response to foreign material, and thus biocompatibility, is governed by surface interactions. In addition, surface science is integral part of the formulation, manufacturing, and application of coatings.

<span class="mw-page-title-main">Thermally induced shape-memory effect (polymers)</span>

The thermally induced unidirectional shape-shape-memory effect is an effect classified within the new so-called smart materials. Polymers with thermally induced shape-memory effect are new materials, whose applications are recently being studied in different fields of science, communications and entertainment.

References

  1. http://camcor.uoregon.edu/labs/polymer-character. Chartoff, Richard."Polymer Characterization Laboratory". University of Oregon CAMCOR. 2013.
  2. Campbell, D.; Pethrick, R. A.; White, J. R. Polymer Characterization Physical Techniques. Chapman and Hall, 1989 p. 11-13.
  3. S. Podzimek. The use of GPC coupled with a multiangle laser light scattering photometer for the characterization of polymers. On the determination of molecular weight, size, and branching. J. Appl. Polymer Sci. 1994 54 , 91-103.
  4. Rowland, S. M.; Striegel, A. M. (2012). "Characterization of Copolymers and Blends by Quintuple-Detector Size-Exclusion Chromatography". Anal. Chem. 84 (11): 4812–4820. doi:10.1021/ac3003775. PMID   22591263.
  5. "Mechanical Properties of Polymers".
  6. Strapassen, R.; Amico, S. C.; Pereira, M. F. R.; Sydenstricker, T.H.D. (June 2015). "Tensile and impact behavior of polypropylene/low density polyethylene blends". Polymer Testing. 24 (4): 468–473. doi:10.1016/j.polymertesting.2005.01.001.
  7. Lotters, J C; Olthuis, W; Bergveld, P (1997). "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications". Journal of Micromechanics and Microengineering. 7 (3): 145–147. doi:10.1088/0960-1317/7/3/017. S2CID   250838683.
  8. Blaine, Roger L. "Determination of Polymer Crystallinity by DSC" (PDF).
  9. Ward, I M (February 1962). "Optical and Mechanical Anisotropy in Crystalline Polymers". Proceedings of the Physical Society. 80 (5): 1176–1188. doi:10.1088/0370-1328/80/5/319.
  10. Tak, A. G. M. (1977). "Charpy Tests on Brittle Polymers*". Polymer Engineering and Science. 17 (10): 733–736. doi:10.1002/pen.760171007.
  11. de Gennes, P. G.; Léger, L. (1982). "Dynamics of Entangled Polymer Chains". Annu. Rev. Phys. Chem. 33: 49–61. doi:10.1146/annurev.pc.33.100182.000405.
  12. "Polymer Properties Database".
  13. Passaglia, Elio (1987). "Crazes and Fracture in Polymers". J. Phys. Chem. Solids. 48 (11): 1075–1100. doi:10.1016/0022-3697(87)90119-3.
  14. Litozar, Blaz; Krajnc, Matjaz (2011). "Cross-Linking of Polymers: Kinetics and Transport Phenomena". Ind. Eng. Chem. Res. 50.
  15. "Introduction to polymers: 5.4 Dynamic mechanical properties".
  16. Mernard, Kevin (2008). Dynamic Mechanical Analysis: A Practical Introduction. CRC Press.
  17. Alb, A.M.; Drenski M.F.; Reed, W.F. "Perspective automatic continuous online monitoring of polymerization reactions (ACOMP)" Polymer International,57,390-396.2008
  18. US patent 6052184 and US Patent 6653150, other patents pending