Polymer architecture

Last updated
Branch point in a polymer Polymer Branch.svg
Branch point in a polymer

Polymer architecture in polymer science relates to the way branching leads to a deviation from a strictly linear polymer chain. [1] Branching may occur randomly or reactions may be designed so that specific architectures are targeted. [1] It is an important microstructural feature. A polymer's architecture affects many of its physical properties including solution viscosity, melt viscosity, solubility in various solvents, glass transition temperature and the size of individual polymer coils in solution.

Contents

Different polymer architectures

Various polymer architectures. RAFT Architecture.png
Various polymer architectures.

Random branching

Branches can form when the growing end of a polymer molecule reaches either (a) back around onto itself or (b) onto another polymer chain, both of which, via abstraction of a hydrogen, can create a mid-chain growth site.

Branching can be quantified by the branching index.

Cross linked polymer

An effect related to branching is chemical crosslinking - the formation of covalent bonds between chains. Crosslinking tends to increase Tg and increase strength and toughness. Among other applications, this process is used to strengthen rubbers in a process known as vulcanization, which is based on crosslinking by sulfur. Car tires, for example, are highly crosslinked in order to reduce the leaking of air out of the tire and to toughen their durability. Eraser rubber, on the other hand, is not crosslinked to allow flaking of the rubber and prevent damage to the paper. Polymerization of pure sulfur at higher temperatures also explains why sulfur becomes more viscous with elevated temperatures in its molten state. [2]

A polymer molecule with a high degree of crosslinking is referred to as a polymer network. [3] A sufficiently high crosslink to chain ratio may lead to the formation of a so-called infinite network or gel, in which each chain is connected to at least one other. [4]

Complex architectures

With the continual development of Living polymerization, the synthesis of polymers with specific architectures becomes more and more facile. Architectures such as star polymers, comb polymers, brush polymers, dendronized polymers, dendrimers and Ring polymers are possible. Complex architecture polymers can be synthesized either with the use of specially tailored starting compounds or by first synthesising linear chains which undergo further reactions to become connected together. Knotted polymers consist of multiple intramolecular cyclization units within a single polymer chain. Linear polymers may also fold into topological circuits, formally classified by their contact topology. [5]

Effect of architecture on physical properties

In general, the higher degree of branching, the more compact a polymer chain is. Branching also affects chain entanglement, the ability of chains to slide past one another, in turn affecting the bulk physical properties. Long chain branches may increase polymer strength, toughness, and the glass transition temperature (Tg) due to an increase in the number of entanglements per chain. A random and short chain length between branches, on the other hand, may reduce polymer strength due to disruption of the chains' ability to interact with each other or crystallize.

An example of the effect of branching on physical properties can be found in polyethylene. High-density polyethylene (HDPE) has a very low degree of branching, is relatively stiff, and is used in applications such as bullet-proof vests. Low-density polyethylene (LDPE), on the other hand, has significant numbers of both long and short branches, is relatively flexible, and is used in applications such as plastic films.

Dendrimer and dendron Graphs.jpg
Dendrimer and dendron

Dendrimers are a special case of branched polymer where every monomer unit is also a branch point. This tends to reduce intermolecular chain entanglement and crystallization. A related architecture, the dendritic polymer, are not perfectly branched but share similar properties to dendrimers due to their high degree of branching.

The degree of branching that occurs during polymerisation can be influenced by the functionality of the monomers that are used. [6] For example, in a free radical polymerisation of styrene, addition of divinylbenzene, which has a functionality of 2, will result in the formation of branched polymer.

See also

Related Research Articles

Polymer Substance composed of macromolecules with repeating structural units

A polymer is a substance or material consisting of very large molecules, or macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

Polyethylene Most common thermoplastic polymer

Polyethylene or polythene is the most common plastic in use today. It is a polymer, primarily used for packaging. As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.

Thermosetting polymer

A thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure, or mixing with a catalyst. Heat is not necessarily applied externally, but is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

Polymer chemistry is a sub-discipline of chemistry that focuses on the chemical synthesis, structure, and chemical and physical properties of polymers and macromolecules. The principles and methods used within polymer chemistry are also applicable through a wide range of other chemistry sub-disciplines like organic chemistry, analytical chemistry, and physical chemistry. Many materials have polymeric structures, from fully inorganic metals and ceramics to DNA and other biological molecules, however, polymer chemistry is typically referred to in the context of synthetic, organic compositions. Synthetic polymers are ubiquitous in commercial materials and products in everyday use, commonly referred to as plastics, and rubbers, and are major components of composite materials. Polymer chemistry can also be included in the broader fields of polymer science or even nanotechnology, both of which can be described as encompassing polymer physics and polymer engineering.

Butene, also known as butylene, is an alkene with the formula C4H8. The word butene may refer to any of the individual compounds. They are colourless gases that are present in crude oil as a minor constituent in quantities that are too small for viable extraction. Butene is therefore obtained by catalytic cracking of long-chain hydrocarbons left during refining of crude oil. Cracking produces a mixture of products, and the butene is extracted from this by fractional distillation.

Cross-link Bond that links one polymer chain to another

In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural polymers.

EPDM rubber Type of synthetic rubber

EPDM rubber is a type of synthetic rubber that is used in many applications.

Linear low-density polyethylene

Linear low-density polyethylene (LLDPE) is a substantially linear polymer (polyethylene), with significant numbers of short branches, commonly made by copolymerization of ethylene with longer-chain olefins. Linear low-density polyethylene differs structurally from conventional low-density polyethylene (LDPE) because of the absence of long chain branching. The linearity of LLDPE results from the different manufacturing processes of LLDPE and LDPE. In general, LLDPE is produced at lower temperatures and pressures by copolymerization of ethylene and such higher alpha-olefins as butene, hexene, or octene. The copolymerization process produces an LLDPE polymer that has a narrower molecular weight distribution than conventional LDPE and in combination with the linear structure, significantly different rheological properties.

A polyolefin is a type of polymer with the general formula (CH2CHR)n. They are derived from a handful of simple olefins (alkenes). Dominant in a commercial sense are polyethylene and polypropylene. More specialized polyolefins include polybutene, polyisobutylene and polymethylpentene. Myriad copolymers are known. They are all colorless or white oils or solids. The name polyolefin indicates the dominant olefin from which they are prepared, i.e.,ethylene, propylene, butene, isobutene and 4-methyl-1-pentene. Polyolefins are not olefins, however. Polyolefins are the foundations of many chemical industries.

Hot-melt adhesive

Hot melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is sticky when hot, and solidifies in a few seconds to one minute. Hot melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.

Branching (polymer chemistry)

In polymer chemistry, branching occurs by the replacement of a substituent, e.g., a hydrogen atom, on a monomer subunit, by another covalently bonded chain of that polymer; or, in the case of a graft copolymer, by a chain of another type. Branched polymers have more compact and symmetrical molecular conformations, and exhibit intra-heterogeneous dynamical behavior with respect to the unbranched polymers. In crosslinking rubber by vulcanization, short sulfur branches link polyisoprene chains into a multiply branched thermosetting elastomer. Rubber can also be so completely vulcanized that it becomes a rigid solid, so hard it can be used as the bit in a smoking pipe. Polycarbonate chains can be crosslinked to form the hardest, most impact-resistant thermosetting plastic, used in safety glasses.

Liquid crystal polymers (LCPs) are polymers with the property of liquid crystal, usually containing aromatic rings as mesogens. Despite uncrosslinked LCPs, polymeric materials like LCEs and LCNs can exhibit liquid crystallinity as well. They are both crosslinked LCPs but have different cross link density. They are already widely used in the display market. In addition, LCPs have unique properties like thermal actuation, anisotropic swelling, and soft elasticity. Therefore, they can be good actuators and sensors. One of the most famous and classical applications for LCPs is Kevlar, a strong but light fiber with wide applications like a bulletproof vest.  

Curing is a chemical process employed in polymer chemistry and process engineering that produces the toughening or hardening of a polymer material by cross-linking of polymer chains. Even if it is strongly associated with the production of thermosetting polymers, the term curing can be used for all the processes where starting from a liquid solution, a solid product is obtained.

Polymer characterization is the analytical branch of polymer science.

<i>N</i>,<i>N</i>-Methylenebisacrylamide Chemical compound

N,N′-Methylenebisacrylamide (MBAm or MBAA) is a cross-linking agent used during the formation of polymers such as polyacrylamide. Its molecular formula is C7H10N2O2. Bisacrylamide is used in biochemistry as it is one of the compounds of the polyacrylamide gel (used for SDS-PAGE). Bisacrylamide polymerizes with acrylamide and is capable of creating cross-links between polyacrylamide chains, thus creating a network of polyacrylamide rather than unconnected linear chains of polyacrylamide.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the space shuttle.

Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae, which compose larger spheroidal structures named spherulites. Polymers can crystallize upon cooling from melting, mechanical stretching or solvent evaporation. Crystallization affects optical, mechanical, thermal and chemical properties of the polymer. The degree of crystallinity is estimated by different analytical methods and it typically ranges between 10 and 80%, with crystallized polymers often called "semi-crystalline". The properties of semi-crystalline polymers are determined not only by the degree of crystallinity, but also by the size and orientation of the molecular chains.

Knotted polymers

Single Chain Cyclized/Knotted Polymers are a new class of polymer architecture with a general structure consisting of multiple intramolecular cyclization units within a single polymer chain. Such a structure was synthesized via the controlled polymerization of multivinyl monomers, which was first reported in Dr. Wenxin Wang's research lab. These multiple intramolecular cyclized/knotted units mimic the characteristics of complex knots found in proteins and DNA which provide some elasticity to these structures. Of note, 85% of elasticity in natural rubber is due to knot-like structures within its molecular chain.
An intramolecular cyclization reaction is where the growing polymer chain reacts with a vinyl functional group on its own chain, rather than with another growing chain in the reaction system. In this way the growing polymer chain covalently links to itself in a fashion similar to that of a knot in a piece of string. As such, single chain cyclized/knotted polymers consist of many of these links, as opposed to other polymer architectures including branched and crosslinked polymers that are formed by two or more polymer chains in combination.

Topological polymers may refer to a polymeric molecule that possesses unique spatial features, such as linear, branched, or cyclic architectures. It could also refer to polymer networks that exhibit distinct topologies owing to special crosslinkers. When self-assembling or crosslinking in a certain way, polymeric species with simple topological identity could also demonstrate complicated topological structures in a larger spatial scale. Topological structures, along with the chemical composition, determine the macroscopic physical properties of polymeric materials.

Hydrogel fiber

Hydrogel fiber is a hydrogel made into a fibrous state, where its width is significantly smaller than its length. The hydrogel's specific surface area at fibrous form is larger than that of the bulk hydrogel, and its mechanical properties also changed accordingly. As a result of these changes, hydrogel fiber has a faster matter exchange rate and can be woven into different structures.

References

  1. 1 2 Rubinstein, Michael; Colby, Ralph H. (2003). Polymer physics. Oxford ; New York: Oxford University Press. p. 6. ISBN   0-19-852059-X.
  2. C.Michael Hogan. 2011. sulfur. Encyclopedia of Earth, eds. A.Jorgensen and C.J.Cleveland, National Council for Science and the environment, Washington DC
  3. IUPAC; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. (1996). "Glossary of Basic Terms in Polymer Science". Pure Appl. Chem. 68 (12): 2287–2311. doi: 10.1351/pac199668122287 .
  4. Painter, pp. 96-100
  5. A. Golovnev at el., Generalized circuit topology of folded linear chains. iScience 23(9), 101492 (2020)
  6. Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN   0-13-250882-6.