Dynamic mechanical analysis

Last updated
Dynamic mechanical analysis
AcronymDMA
Classification Thermal analysis
Other techniques
Related Isothermal titration calorimetry
Dynamic mechanical analysis
Thermomechanical analysis
Thermogravimetric analysis
Differential thermal analysis
Dielectric thermal analysis

Dynamic mechanical analysis (abbreviated DMA) is a technique used to study and characterize materials. It is most useful for studying the viscoelastic behavior of polymers. A sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature [1] of the material, as well as to identify transitions corresponding to other molecular motions.

Contents

Theory

Viscoelastic properties of materials

Figure 1. A typical DMA tester with grips to hold the sample and an environmental chamber to provide different temperature conditions. A sample is mounted on the grips and the environmental chamber can slide over to enclose the sample. Dynamic+Tests+Setup+Chem+538.jpg
Figure 1. A typical DMA tester with grips to hold the sample and an environmental chamber to provide different temperature conditions. A sample is mounted on the grips and the environmental chamber can slide over to enclose the sample.

Polymers composed of long molecular chains have unique viscoelastic properties, which combine the characteristics of elastic solids and Newtonian fluids. The classical theory of elasticity describes the mechanical properties of elastic solids where stress is proportional to strain in small deformations. Such response to stress is independent of strain rate. The classical theory of hydrodynamics describes the properties of viscous fluid, for which stress response depends on strain rate. [2] This solidlike and liquidlike behaviour of polymers can be modelled mechanically with combinations of springs and dashpots, making for both elastic and viscous behaviour of viscoelastic materials such as bitumen. [3]

Dynamic moduli of polymers

The viscoelastic property of a polymer is studied by dynamic mechanical analysis where a sinusoidal force (stress σ) is applied to a material and the resulting displacement (strain) is measured. For a perfectly elastic solid, the resulting strain and the stress will be perfectly in phase. For a purely viscous fluid, there will be a 90 degree phase lag of strain with respect to stress. [4] Viscoelastic polymers have the characteristics in between where some phase lag will occur during DMA tests. [4] When the strain is applied and the stress lags behind, the following equations hold: [4]

where

is the frequency of strain oscillation,
is time,
is phase lag between stress and strain.

Consider the purely elastic case, where stress is proportional to strain given by Young's modulus . We have

Now for the purely viscous case, where stress is proportional to strain rate.

The storage modulus measures the stored energy, representing the elastic portion, and the loss modulus measures the energy dissipated as heat, representing the viscous portion. [4] The tensile storage and loss moduli are defined as follows:

Similarly, in the shearing instead of tension case, we also define shear storage and loss moduli, and .

Complex variables can be used to express the moduli and as follows:

where

Derivation of dynamic moduli

Shear stress of a finite element in one direction can be expressed with relaxation modulus and strain rate, integrated over all past times up to the current time . With strain rate and substitution one obtains . Application of the trigonometric addition theorem lead to the expression

with converging integrals, if for , which depend on frequency but not of time. Extension of with trigonometric identity lead to

.

Comparison of the two equations lead to the definition of and . [5]

Applications

Measuring glass transition temperature

One important application of DMA is measurement of the glass transition temperature of polymers. Amorphous polymers have different glass transition temperatures, above which the material will have rubbery properties instead of glassy behavior and the stiffness of the material will drop dramatically along with a reduction in its viscosity. At the glass transition, the storage modulus decreases dramatically and the loss modulus reaches a maximum. Temperature-sweeping DMA is often used to characterize the glass transition temperature of a material.

Figure 2. Typical DMA thermogram of an amorphous thermoplastic (polycarbonate). Storage Modulus (E') and Loss Modulus (E'') and Loss Factor tan(delta) are plotted as function of temperature. The glass transition temperature of Polycarbonate was detected to be around 151degC (evaluation according to ISO 6721-11) 2019-10-17 20 23 45-DMA Reference Measurements Linear Drive - Anton Paar RheoCompass(tm).png
Figure 2. Typical DMA thermogram of an amorphous thermoplastic (polycarbonate). Storage Modulus (E’) and Loss Modulus (E’’) and Loss Factor tan(delta) are plotted as function of temperature. The glass transition temperature of Polycarbonate was detected to be around 151°C (evaluation according to ISO 6721-11)

Polymer composition

Varying the composition of monomers and cross-linking can add or change the functionality of a polymer that can alter the results obtained from DMA. An example of such changes can be seen by blending ethylene propylene diene monomer (EPDM) with styrene-butadiene rubber (SBR) and different cross-linking or curing systems. Nair et al. abbreviate blends as E0S, E20S, etc., where E0S equals the weight percent of EPDM in the blend and S denotes sulfur as the curing agent. [6]

Increasing the amount of SBR in the blend decreased the storage modulus due to intermolecular and intramolecular interactions that can alter the physical state of the polymer. Within the glassy region, EPDM shows the highest storage modulus due to stronger intermolecular interactions (SBR has more steric hindrance that makes it less crystalline). In the rubbery region, SBR shows the highest storage modulus resulting from its ability to resist intermolecular slippage. [6]

When compared to sulfur, the higher storage modulus occurred for blends cured with dicumyl peroxide (DCP) because of the relative strengths of C-C and C-S bonds.

Incorporation of reinforcing fillers into the polymer blends also increases the storage modulus at an expense of limiting the loss tangent peak height.

DMA can also be used to effectively evaluate the miscibility of polymers. The E40S blend had a much broader transition with a shoulder instead of a steep drop-off in a storage modulus plot of varying blend ratios, indicating that there are areas that are not homogeneous. [6]

Instrumentation

Figure 3. General schematic of a DMA instrument. Schematic of DMA.png
Figure 3. General schematic of a DMA instrument.

The instrumentation of a DMA consists of a displacement sensor such as a linear variable differential transformer, which measures a change in voltage as a result of the instrument probe moving through a magnetic core, a temperature control system or furnace, a drive motor (a linear motor for probe loading which provides load for the applied force), a drive shaft support and guidance system to act as a guide for the force from the motor to the sample, and sample clamps in order to hold the sample being tested. Depending on what is being measured, samples will be prepared and handled differently. A general schematic of the primary components of a DMA instrument is shown in figure 3. [7]

Types of analyzers

There are two main types of DMA analyzers used currently: forced resonance analyzers and free resonance analyzers. Free resonance analyzers measure the free oscillations of damping of the sample being tested by suspending and swinging the sample. A restriction to free resonance analyzers is that it is limited to rod or rectangular shaped samples, but samples that can be woven/braided are also applicable. Forced resonance analyzers are the more common type of analyzers available in instrumentation today. These types of analyzers force the sample to oscillate at a certain frequency and are reliable for performing a temperature sweep.

Figure 4. Torsional versus Axial Motions. Two types of DMA analyzers.png
Figure 4. Torsional versus Axial Motions.

Analyzers are made for both stress (force) and strain (displacement) control. In strain control, the probe is displaced and the resulting stress of the sample is measured by implementing a force balance transducer, which utilizes different shafts. The advantages of strain control include a better short time response for materials of low viscosity and experiments of stress relaxation are done with relative ease. In stress control, a set force is applied to the sample and several other experimental conditions (temperature, frequency, or time) can be varied. Stress control is typically less expensive than strain control because only one shaft is needed, but this also makes it harder to use. Some advantages of stress control include the fact that the structure of the sample is less likely to be destroyed and longer relaxation times/ longer creep studies can be done with much more ease. Characterizing low viscous materials come at a disadvantage of short time responses that are limited by inertia. Stress and strain control analyzers give about the same results as long as characterization is within the linear region of the polymer in question. However, stress control lends a more realistic response because polymers have a tendency to resist a load. [8]

Stress and strain can be applied via torsional or axial analyzers. Torsional analyzers are mainly used for liquids or melts but can also be implemented for some solid samples since the force is applied in a twisting motion. The instrument can do creep-recovery, stress–relaxation, and stress–strain experiments. Axial analyzers are used for solid or semisolid materials. It can do flexure, tensile, and compression testing (even shear and liquid specimens if desired). These analyzers can test higher modulus materials than torsional analyzers. The instrument can do thermomechanical analysis (TMA) studies in addition to the experiments that torsional analyzers can do. Figure 4 shows the general difference between the two applications of stress and strain. [8]

Changing sample geometry and fixtures can make stress and strain analyzers virtually indifferent of one another except at the extreme ends of sample phases, i.e. really fluid or rigid materials. Common geometries and fixtures for axial analyzers include three-point and four-point bending, dual and single cantilever, parallel plate and variants, bulk, extension/tensile, and shear plates and sandwiches. Geometries and fixtures for torsional analyzers consist of parallel plates, cone-and-plate, couette, and torsional beam and braid. In order to utilize DMA to characterize materials, the fact that small dimensional changes can also lead to large inaccuracies in certain tests needs to be addressed. Inertia and shear heating can affect the results of either forced or free resonance analyzers, especially in fluid samples. [8]

Test modes

Two major kinds of test modes can be used to probe the viscoelastic properties of polymers: temperature sweep and frequency sweep tests. A third, less commonly studied test mode is dynamic stress–strain testing.

Temperature sweep

A common test method involves measuring the complex modulus at low constant frequency while varying the sample temperature. A prominent peak in appears at the glass transition temperature of the polymer. Secondary transitions can also be observed, which can be attributed to the temperature-dependent activation of a wide variety of chain motions. [9] In semi-crystalline polymers, separate transitions can be observed for the crystalline and amorphous sections. Similarly, multiple transitions are often found in polymer blends.

For instance, blends of polycarbonate and poly(acrylonitrile-butadiene-styrene) were studied with the intention of developing a polycarbonate-based material without polycarbonate's tendency towards brittle failure. Temperature-sweeping DMA of the blends showed two strong transitions coincident with the glass transition temperatures of PC and PABS, consistent with the finding that the two polymers were immiscible. [10]

Frequency sweep

Figure 5. A frequency sweep test on Polycarbonate under room temperature (25 degC). Storage Modulus (E') and Loss Modulus (E'') were plotted against frequency. The increase of frequency "freezes" the chain movements and a stiffer behavior was observed. Freq Sweep Chem538.jpg
Figure 5. A frequency sweep test on Polycarbonate under room temperature (25 °C). Storage Modulus (E’) and Loss Modulus (E’’) were plotted against frequency. The increase of frequency “freezes” the chain movements and a stiffer behavior was observed.

A sample can be held to a fixed temperature and can be tested at varying frequency. Peaks in and in E’’ with respect to frequency can be associated with the glass transition, which corresponds to the ability of chains to move past each other. This implies that the glass transition is dependent on strain rate in addition to temperature. Secondary transitions may be observed as well.

The Maxwell model provides a convenient, if not strictly accurate, description of viscoelastic materials. Applying a sinusoidal stress to a Maxwell model gives: where is the Maxwell relaxation time. Thus, a peak in E’’ is observed at the frequency . [9] A real polymer may have several different relaxation times associated with different molecular motions.

Dynamic stress–strain studies

By gradually increasing the amplitude of oscillations, one can perform a dynamic stress–strain measurement. The variation of storage and loss moduli with increasing stress can be used for materials characterization, and to determine the upper bound of the material's linear stress–strain regime. [8]

Combined sweep

Because glass transitions and secondary transitions are seen in both frequency studies and temperature studies, there is interest in multidimensional studies, where temperature sweeps are conducted at a variety of frequencies or frequency sweeps are conducted at a variety of temperatures. This sort of study provides a rich characterization of the material, and can lend information about the nature of the molecular motion responsible for the transition.

For instance, studies of polystyrene (Tg ≈110 °C) have noted a secondary transition near room temperature. Temperature-frequency studies showed that the transition temperature is largely frequency-independent, suggesting that this transition results from a motion of a small number of atoms; it has been suggested that this is the result of the rotation of the phenyl group around the main chain. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

In engineering, deformation may be elastic or plastic. If the deformation is negligible, the object is said to be rigid.

A Maxwell material is the most simple model viscoelastic material showing properties of a typical liquid. It shows viscous flow on the long timescale, but additional elastic resistance to fast deformations. It is named for James Clerk Maxwell who proposed the model in 1867. It is also known as a Maxwell fluid. A generalization of the scalar relation to a tensor equation lacks motivation from more microscopic models and does not comply with the concept of material objectivity. However, these criteria are fulfilled by the Upper-convected Maxwell model.

Hemorheology, also spelled haemorheology, or blood rheology, is the study of flow properties of blood and its elements of plasma and cells. Proper tissue perfusion can occur only when blood's rheological properties are within certain levels. Alterations of these properties play significant roles in disease processes. Blood viscosity is determined by plasma viscosity, hematocrit and mechanical properties of red blood cells. Red blood cells have unique mechanical behavior, which can be discussed under the terms erythrocyte deformability and erythrocyte aggregation. Because of that, blood behaves as a non-Newtonian fluid. As such, the viscosity of blood varies with shear rate. Blood becomes less viscous at high shear rates like those experienced with increased flow such as during exercise or in peak-systole. Therefore, blood is a shear-thinning fluid. Contrarily, blood viscosity increases when shear rate goes down with increased vessel diameters or with low flow, such as downstream from an obstruction or in diastole. Blood viscosity also increases with increases in red cell aggregability.

<span class="mw-page-title-main">Rabi cycle</span> Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

<span class="mw-page-title-main">Elastomer</span> Polymer with rubber-like elastic properties

An elastomer is a polymer with viscoelasticity and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of elastic polymer, is often used interchangeably with rubber, although the latter is preferred when referring to vulcanisates. Each of the monomers which link to form the polymer is usually a compound of several elements among carbon, hydrogen, oxygen and silicon. Elastomers are amorphous polymers maintained above their glass transition temperature, so that considerable molecular reconformation is feasible without breaking of covalent bonds. At ambient temperatures, such rubbers are thus relatively compliant and deformable.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.

In the mathematical description of general relativity, the Boyer–Lindquist coordinates are a generalization of the coordinates used for the metric of a Schwarzschild black hole that can be used to express the metric of a Kerr black hole.

Dynamic modulus is the ratio of stress to strain under vibratory conditions. It is a property of viscoelastic materials.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

In quantum optics, the Jaynes–Cummings model is a theoretical model that describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity. It is named after Edwin Thompson Jaynes and Fred Cummings in the 1960s and was confirmed experimentally in 1987.

<span class="mw-page-title-main">Angle-resolved photoemission spectroscopy</span> Experimental technique to determine the distribution of electrons in solids

Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoelectric effect, in which an incoming photon of sufficient energy ejects an electron from the surface of a material. By directly measuring the kinetic energy and emission angle distributions of the emitted photoelectrons, the technique can map the electronic band structure and Fermi surfaces. ARPES is best suited for the study of one- or two-dimensional materials. It has been used by physicists to investigate high-temperature superconductors, graphene, topological materials, quantum well states, and materials exhibiting charge density waves.

<span class="mw-page-title-main">Coble creep</span> Mechanism of crystalline solid deformation

In materials science, Coble creep, a form of diffusion creep, is a mechanism for deformation of crystalline solids. Contrasted with other diffusional creep mechanisms, Coble creep is similar to Nabarro–Herring creep in that it is dominant at lower stress levels and higher temperatures than creep mechanisms utilizing dislocation glide. Coble creep occurs through the diffusion of atoms in a material along grain boundaries. This mechanism is observed in polycrystals or along the surface in a single crystal, which produces a net flow of material and a sliding of the grain boundaries.

<span class="mw-page-title-main">Time–temperature superposition</span> Concept in polymer physics

The time–temperature superposition principle is a concept in polymer physics and in the physics of glass-forming liquids.

The Larson–Miller relation, also widely known as the Larson–Miller parameter and often abbreviated LMP, is a parametric relation used to extrapolate experimental data on creep and rupture life of engineering materials.

A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity. Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.

Microrheology is a technique used to measure the rheological properties of a medium, such as microviscosity, via the measurement of the trajectory of a flow tracer. It is a new way of doing rheology, traditionally done using a rheometer. There are two types of microrheology: passive microrheology and active microrheology. Passive microrheology uses inherent thermal energy to move the tracers, whereas active microrheology uses externally applied forces, such as from a magnetic field or an optical tweezer, to do so. Microrheology can be further differentiated into 1- and 2-particle methods.

<span class="mw-page-title-main">Rock mass plasticity</span> Study of irreversible deformation of rock

In geotechnical engineering, rock mass plasticity is the study of the response of rocks to loads beyond the elastic limit. Historically, conventional wisdom has it that rock is brittle and fails by fracture, while plasticity is identified with ductile materials such as metals. In field-scale rock masses, structural discontinuities exist in the rock indicating that failure has taken place. Since the rock has not fallen apart, contrary to expectation of brittle behavior, clearly elasticity theory is not the last word.

Anelasticity is a property of materials that describes their behaviour when undergoing deformation. Its formal definition does not include the physical or atomistic mechanisms but still interprets the anelastic behaviour as a manifestation of internal relaxation processes. It is a behaviour differing from elastic behaviour.

References

  1. "What is Dynamic Mechanical Analysis (DMA)?". 22 April 2018. Retrieved 2018-10-01.
  2. Ferry, J.D. (1980). Viscoelastic properties of polymers (3 ed.). Wiley.
  3. Ferry, J.D (1991). "Some reflections on the early development of polymer dynamics: Viscoelasticity, dielectric dispersion and self-diffusion". Macromolecules. 24 (19): 5237–5245. Bibcode:1991MaMol..24.5237F. doi:10.1021/ma00019a001.
  4. 1 2 3 4 5 Meyers, M.A.; Chawla K.K. (1999). Mechanical Behavior of Materials. Prentice-Hall.
  5. Ferry, J.D.; Myers, Henry S (1961). Viscoelastic properties of polymers. Vol. 108. The Electrochemical Society.
  6. 1 2 3 Nair, T.M.; Kumaran, M.G.; Unnikrishnan, G.; Pillai, V.B. (2009). "Dynamic Mechanical Analysis of Ethylene-Propylene-Diene Monomer Rubber and Styrene-Butadiene Rubber Blends". Journal of Applied Polymer Science. 112: 72–81. doi:10.1002/app.29367.
  7. "DMA". Archived from the original on 2010-06-10. Retrieved 2010-02-02.
  8. 1 2 3 4 Menard, Kevin P. (1999). "4". Dynamic Mechanical Analysis: A Practical Introduction. CRC Press. ISBN   0-8493-8688-8.
  9. 1 2 3 Young, R.J.; P.A. Lovell (1991). Introduction to Polymers (2 ed.). Nelson Thornes.
  10. J. Màs; et al. (2002). "Dynamic mechanical properties of polycarbonate and acrylonitrile-butadiene-styrene copolymer blends". Journal of Applied Polymer Science. 83 (7): 1507–1516. doi:10.1002/app.10043.