Acronym | ITC |
---|---|
Classification | Thermal analysis |
Manufacturers | TA Instruments, Microcal/Malvern Instruments |
Other techniques | |
Related | Isothermal microcalorimetry Differential scanning calorimetry |
In chemical thermodynamics, isothermal titration calorimetry (ITC) is a physical technique used to determine the thermodynamic parameters of interactions in solution. [1] [2] It is most often used to study the binding of small molecules (such as medicinal compounds) to larger macromolecules (proteins, DNA etc.) in a label-free environment. [3] [4] It consists of two cells which are enclosed in an adiabatic jacket. The compounds to be studied are placed in the sample cell, while the other cell, the reference cell, is used as a control and contains the buffer in which the sample is dissolved.
The technique was developed by H. D. Johnston in 1968 as a part of his Ph.D. dissertation at Brigham Young University, [5] and was considered niche until introduced commercially by MicroCal Inc. in 1988. Compared to other calorimeters, ITC has an advantage in not requiring any correctors since there was no heat exchange between the system and the environment.
ITC is a quantitative technique that can determine the binding affinity (), reaction enthalpy (), and binding stoichiometry () of the interaction between two or more molecules in solution. This is achieved by measuring the enthalpies of a series of binding reactions caused by injections of a solution of one molecule to a reaction cell containing a solution of another molecule. The enthalpy values are plotted over the molar ratios resulting from the injections. From the plot, the molar reaction enthalpy , the affinity constant () and the stochiometry are determined by curve fitting. The reaction's Gibbs free energy change () and entropy change () can be determined using the relationship:
(where is the gas constant and is the absolute temperature).
For accurate measurements of binding affinity, the curve of the thermogram must be sigmoidal. The profile of the curve is determined by the c-value, which is calculated using the equation:
where is the stoichiometry of the binding, is the association constant and is the concentration of the molecule in the cell. [1] [6] [7] The c-value must fall between 1 and 1000, ideally between 10 and 100. In terms of binding affinity, it would be approximately from ~ within the limit range. [8]
An isothermal titration calorimeter is composed of two identical cells made of a highly efficient thermally conducting and chemically inert material such as Hastelloy alloy or gold, surrounded by an adiabatic jacket. [1] [7] Sensitive thermopile/thermocouple circuits are used to detect temperature differences between the reference cell (filled with buffer or water) and the sample cell containing the macromolecule. Prior to addition of ligand, a constant power (<1 mW) is applied to the reference cell. This directs a feedback circuit, activating a heater located on the sample cell. [6] During the experiment, ligand is titrated into the sample cell in precisely known aliquots, causing heat to be either taken up or evolved (depending on the nature of the reaction). Measurements consist of the time-dependent input of power required to maintain equal temperatures between the sample and reference cells. [5]
In an exothermic reaction, the temperature in the sample cell increases upon addition of ligand. This causes the feedback power to the sample cell to be decreased (remember: a reference power is applied to the reference cell) in order to maintain an equal temperature between the two cells. In an endothermic reaction, the opposite occurs; the feedback circuit increases the power in order to maintain a constant temperature (isothermal operation). [1]
Observations are plotted as the power needed to maintain the reference and the sample cell at an identical temperature against time. As a result, the experimental raw data consists of a series of spikes of heat flow (power), with every spike corresponding to one ligand injection. These heat flow spikes/pulses are integrated with respect to time, giving the total heat exchanged per injection. The pattern of these heat effects as a function of the molar ratio [ligand]/[macromolecule] can then be analyzed to give the thermodynamic parameters of the interaction under study.
To obtain an optimum result, each injection should be given enough time for a reaction equilibrium to reach. Degassing samples is often necessary in order to obtain good measurements as the presence of gas bubbles within the sample cell will lead to abnormal data plots in the recorded results. The entire experiment takes place under computer control. [7]
Direct titration is performed most commonly with ITC to obtain the thermodynamic data, by binding two components of the reaction directly to each other. However, many of the chemical reactions and binding interactions may have higher binding affinity above what is desirable with the c-window. To troubleshoot the limitation of c-window and conditions for certain binding interactions, various different methods of titration can be performed. In some cases, simply doing a reverse titration of changing the samples between the injection syringe and sample cell can solve the issue, depending on the binding mechanism. [9] For most of the high or low affinity bindings require chelation or competitive titration. This method is done by loading pre-bound complex solution in the sample cell, and chelating one of the components out with a reagent of higher observed binding affinity within the desirable c-window.
The collected experimental data reflects not only the binding thermodynamics of the interaction of interest, but any contributing competing equilibria associated to it. A post-hoc analysis can be performed to determine the buffer or solvent-independent enthalpy from the experimental thermodynamics, by simply going through the process of Hess’ law. Below example shows a simple interaction between a metal ion (M) and a ligand (L). B represents the buffer used for this interaction and represents protons.
Therefore,
which can be further processed to calculate the enthalpy of metal-ligand interaction. [10] [11] Although this example is between a metal and a ligand, it is applicable to any ITC experiment, regarding binding interactions.
As a part of the analysis, a number of protons are required to calculate the solvent-independent thermodynamics. This can be easily done by plotting a graph such as shown below.
The linear equation of this plot is the rearranged version of the equation above from the post-hoc analysis in a form of y = mx + b:
Equilibrium constant of the reaction is also not independent from the other competing equilibria. Competition would include buffer interactions and other pH-dependent reactions depending on the experimental conditions. The competition from species other than the species of interest is included in the competition factor, Q in the following equation: [11]
where, represents species such a buffer or protons, represents their equilibrium constant, when,
For the past 30 years, isothermal titration calorimetry has been used in a wide array of fields. In the old days, this technique was used to determine fundamental thermodynamic values for basic small molecular interactions. [12] In recent years, ITC has been used in more industrially applicable areas, such as drug discovery and testing synthetic materials. Although it is still heavily used in fundamental chemistry, the trend has shifted over to the biological side, where label-free and buffer independent values are relatively harder to achieve. [13] [14]
Using the thermodynamic data from ITC, it is possible to deduce enzyme kinetics including proton or electron transfer, allostery and cooperativity, and enzyme inhibition. [15] [16] ITC collects data over time that is useful for any kinetic experiments, but especially with the proteins due to constant aliquots of injections. In terms of calculation, equilibrium constant and the slopes of binding can be directly utilized to determine the allostery and charge transfer, by comparing experimental data of different conditions (pH, use of mutated peptide chain and binding sites, etc.) .
Membrane proteins and self-assembly properties of certain proteins can be studied under this technique, due to being a label-free calorimeter. Membrane proteins are known to have difficulties with selection of proper solubilization and purification protocols. As ITC is a non-destructive calorimetric tool, it can be used as a detector to locate the fraction of protein with desired binding sites, by binding a known binding ligand to the protein. [17] This feature also applies in studies of self-assembling proteins, especially in use of measuring thermodynamics of their structural transformation. [18]
Binding affinity carries a huge importance in medicinal chemistry, as drugs need to bind to the protein effectively within a desired range. However, determining enthalpy changes and optimization of thermodynamic parameters are hugely difficult when designing drugs. [19] ITC troubleshoots this issue easily by deducing the binding affinity, enthalpic/entropic contributions and its binding stoichiometry.
Applying the ideas above, chirality of organometallic compounds can be deduced as well with this technique. [20] Each chiral compound has its own unique properties and binding mechanisms that are comparable to each other, which leads to differences in thermodynamic properties. By binding chiral solutions in a binding site can deduce the type of chirality and depending on the purpose, which chiral compound is more suitable for binding.
Binding metal ions to protein and other components of biological material is one of the most popular uses of ITC, since ovotransferrin to ferric iron binding study published by Lin et al. from MicroCal Inc. [21] This is due to some of the metal ions utilized in biological systems having d10 electron configuration which cannot be studied with other common techniques such as UV-vis spectrophotometry or electron paramagnetic resonance. [8] [10] It is also closely related to biochemical and medicinal studies due to the large abundance of metal binding enzymes in biological systems. [22]
The technique has been well utilized in studying carbon nanotubes to determine thermodynamic binding interactions with biological molecules and graphene composite interactions. [23] Another notable use of ITC with carbon nanotubes is optimization of preparation of carbon nanotubes from graphene composite and polyvinyl alcohol (PVA). PVA assembly process can be measured thermodynamically as mixing of the two ingredients is an exothermic reaction, and its binding trend can be easily observed by ITC.
In chemistry and thermodynamics, calorimetry is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. Scottish physician and scientist Joseph Black, who was the first to recognize the distinction between heat and temperature, is said to be the founder of the science of calorimetry.
In thermodynamics, enthalpy, is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work that was done against constant external pressure to establish the system's physical dimensions from to some final volume , i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation, and other chemical "energies" are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.
In thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system. The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point. Therefore, only relative free energy values, or changes in free energy, are physically meaningful.
A calorimeter is a device used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.
In chemistry and thermodynamics, the standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements in their reference state, with all substances in their standard states. The standard pressure value p⦵ = 105 Pa(= 100 kPa = 1 bar) is recommended by IUPAC, although prior to 1982 the value 1.00 atm (101.325 kPa) was used. There is no standard temperature. Its symbol is ΔfH⦵. The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K).
Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively.
In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as
Hess’ law of constant heat summation, also known simply as Hess' law, is a relationship in physical chemistry named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840. The law states that the total enthalpy change during the complete course of a chemical reaction is independent of the sequence of steps taken.
Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects.
In supramolecular chemistry, host–guest chemistry describes complexes that are composed of two or more molecules or ions that are held together in unique structural relationships by forces other than those of full covalent bonds. Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another.
The Van 't Hoff equation relates the change in the equilibrium constant, Keq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, ΔrH⊖, for the process. The subscript means "reaction" and the superscript means "standard". It was proposed by Dutch chemist Jacobus Henricus van 't Hoff in 1884 in his book Études de Dynamique chimique.
In biochemistry, equilibrium unfolding is the process of unfolding a protein or RNA molecule by gradually changing its environment, such as by changing the temperature or pressure, pH, adding chemical denaturants, or applying force as with an atomic force microscope tip. If the equilibrium was maintained at all steps, the process theoretically should be reversible during equilibrium folding. Equilibrium unfolding can be used to determine the thermodynamic stability of the protein or RNA structure, i.e. free energy difference between the folded and unfolded states.
Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa, or 100 kPa. Both of these definitions for the standard condition for pressure are in use.
Molecular binding is an attractive interaction between two molecules that results in a stable association in which the molecules are in close proximity to each other. It is formed when atoms or molecules bind together by sharing of electrons. It often, but not always, involves some chemical bonding.
In thermodynamics, the enthalpy of mixing is the enthalpy liberated or absorbed from a substance upon mixing. When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. This enthalpy, if released exothermically, can in an extreme case cause an explosion.
The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressure i.e. at these conditions the adsorbate's partial pressure is related to its volume V adsorbed onto a solid adsorbent. The adsorbent, as indicated in the figure, is assumed to be an ideal solid surface composed of a series of distinct sites capable of binding the adsorbate. The adsorbate binding is treated as a chemical reaction between the adsorbate gaseous molecule and an empty sorption site S. This reaction yields an adsorbed species with an associated equilibrium constant :
In coordination chemistry, a stability constant is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the interaction of a metal ion with a ligand and supramolecular complexes, such as host–guest complexes and complexes of anions. The stability constant(s) provide(s) the information required to calculate the concentration(s) of the complex(es) in solution. There are many areas of application in chemistry, biology and medicine.
The method of sorption calorimetry is designed for studies of hydration of complex organic and biological materials. It has been applied for studies of surfactants, lipids, DNA, nanomaterials and other substances. A sorption calorimetric experiment is performed at isothermal regime, but different temperatures can be studied in separate experiments.
Adsorption is the adhesion of ions or molecules onto the surface of another phase. Adsorption may occur via physisorption and chemisorption. Ions and molecules can adsorb to many types of surfaces including polymer surfaces. A polymer is a large molecule composed of repeating subunits bound together by covalent bonds. In dilute solution, polymers form globule structures. When a polymer adsorbs to a surface that it interacts favorably with, the globule is essentially squashed, and the polymer has a pancake structure.
Pressure perturbation calorimetry (PPC) is a technique closely related to isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). In brief, PPC measures heat changes associated with dilute aqueous solutions of proteins or other biomolecules in response to introduction of relatively small pressure perturbations. Importantly, such heat changes can be related to thermodynamic properties of proteins such as hydration and conformational transitions upon folding and/or ligand binding.