Self-assembling peptide

Last updated

Self-assembling peptides are a category of peptides which undergo spontaneous assembling into ordered nanostructures. Originally described in 1993, [1] these designer peptides have attracted interest in the field of nanotechnology for their potential for application in areas such as biomedical nanotechnology, [2] tissue cell culturing, [3] [4] molecular electronics, and more. [5]

Contents

Effectively self-assembling peptides act as building blocks for various material and device applications. The essence of this technology is to replicate what nature does: to use molecular recognition processes to form ordered assemblies of building blocks capable of conducting biochemical activities.

Background

Peptides can serve as sturdy building blocks for a wide range of materials as they can be designed to combine with a range of other building blocks such as lipids, sugars, nucleic acids, metallic nanocrystals, and so on; this gives the peptides an edge over carbon nanotubes, which are another popular nanomaterial, as the carbon structure is unreactive. They also exhibit biocompatibility and molecular recognition; the latter is particularly useful as it enables specific selectivity for building ordered nanostructures. Additionally, peptides have superb resistance to extreme temperature, detergents, and denaturants. [6]

The ability of peptides to perform self-assembly allows them to be used as fabrication tools, which will continue to grow as a fundamental part of nanomaterials production. [7] The self-assembling of peptides is facilitated through the molecules' structural and chemical compatibility with each other. The structures formed demonstrate physical and chemical stability. [6]

An advantage to using self-assembling peptides to build nanostructures in a bottom-up approach is that specific features can be incorporated; the peptides can be modified to serve specific functions. This approach means the final structures are made from the self-integration of small, simple building blocks. This approach is needed for nanoscale structure, as the top-down method of miniaturizing devices using sophisticated lithography and etching techniques has reached a physical limit. Moreover, the top-down approach applies mainly to silicon-based technology and cannot be used for biological developments.

The peptide structure is organized hierarchically into four levels. The primary structure of a peptide is the sequence of the amino acids of the peptide chain. Amino acids are monomer molecules that carry a carboxyl and an amine functional group; a spectrum of other chemical groups are attached to different amino acids, such as thiols and alcohols. This facilitates the wide range of chemical interactions and, therefore, molecular recognitions that peptides are capable of; for designer self-assembling peptides, both natural and non-natural amino acids are used. They link together in a controlled manner to form short peptides, which link to form long polypeptide chains.

Along these chains, the alternating amine (NH) and carbonyl (CO) groups are highly polar, and they readily form hydrogen bonds with each other. These hydrogen bonds bind peptide chains together to give rise to secondary structures. Stable secondary structures include the alpha-helices and beta-sheets. Unstable secondary structures are random loops, turns, and coils that are formed. The secondary structure that is formed depends on the primary structure; different sequences of the amino acids exhibit different preferences.

Secondary structures usually fold, with a variety of loops and turns, into a tertiary structure. What differentiates the secondary structure from the tertiary structure is that the latter includes non-covalent interactions. The quaternary structure combines two or more different chains of polypeptide to form what is known as a protein sub-unit.

The self-assembly process of the peptide chains includes dynamic—reassembly, which occurs repeatedly in a self-healing manner. [8] The types of interactions that facilitate the reassembly of peptide structures include van der Waals forces, ionic bonds, hydrogen bonds, and hydrophobic forces. [8] These forces also facilitate the molecular recognition function that the peptides encompass. These interactions work on the basis of preference dependent on energy properties and specificity.

A range of different nanostructures can be formed. Nanotubes are defined as elongated nano-objects with definite inner holes. [9] [10] [11] [12] Nanofibrils are solid on the inside, as opposed to the hollow nanotubes.

Processing/Synthesis

Peptide synthesis can be easily conducted by the established method of solid-phase chemistry in gram or kilogram quantities. The d-isomer conformation can be used for peptide synthesis.

Nanostructures can be made by dissolving dipeptides in 1,1,1,3,3,3-hexafluoro-2-propanol at 100 mg/ml and then diluting it with water for a concentration of less than 2 mg/ml. [11] Multiwall nanotubes with diameters of 80–300 nm, made of dipeptides from the diphenylalanine motif of Alzheimer's β-amyloid peptide are made by this method. If a thiol is introduced into the diphenylalanine then nano-spheres can be formed instead; nanospheres with diameters of 10–100 nm can also be made this way, from a diphenylglycine peptide. [11]

Characterization

Atomic force microscopy can measure the mechanical properties of nanotubes. [9] [10] [13] [11] Scanning-electron and atomic-forces microscopy are used to examine Lego peptide nanofiber structures. [7]

Dynamic light scattering studies show structures of surfactant peptides. [7] Surfactant peptides have been studied using a quick-freeze/deep–etch sample preparation method which minimizes effects on the structure. The sample nanostructures are flash frozen at −196 °C and can be studied three-dimensionally, using Transmission electron microscopy. [7]

Using computer technology, a molecular model of peptides and their interactions can be built and studied.

Specific tests can be performed on certain peptides: for example, a fluorescent emission test could be applied to amyloid fibrils by using the dye Thioflavin T, which binds specifically to the peptide and emits blue fluorescence when excited. [6]

Structure

Dipeptides

The simplest peptide building blocks are dipeptides. Nanotubes formed from dipeptides are the widest among peptide nanotubes. An example of a dipeptide that has been studied is a peptide from the diphenylalanine motif of the Alzheimer's β-amyloid peptide. [11]

Dipeptides have also been shown to self-assemble into hydrogels, another form of nanostructures, when connected to the protecting group Fluorenylmethyloxycarbonyl chloride. Experiments focusing on the dipeptide Fmoc-Diphenylalanine have been conducted that have explored the mechanism in which Fmoc-diphenylalanine self-assembles into hydrogels via π-π interlocked β-sheets. [14] Phenylalanine has an aromatic ring, a crucial part of the molecule due to its high electron-density, which favors self-assembly where the rings stack and enable the assembly to occur.

Lego peptides / Ionic self-complementary peptides

These peptides are approximately 5 nm in size and have 16 amino acids. [8] The class of Lego peptides has the unique characteristics of having two distinct surfaces being either hydrophobic or hydrophilic, similar to the pegs and holes of Lego blocks. [7] The hydrophobic side promotes self-assembly in water and the hydrophilic side has a regular arrangement of charged amino-acid residues, which in turn brings about a defined pattern of ionic bonds. [7] The arrangement of the residues can be classified according to the order of the charges; Modulus I has a charge pattern of + − + − + −, modulus II + + − − + + − −, and modulus III + + + − − − + + +, and so on. [7] The peptides self-assemble into nanofibers approximately 10 nm long in the presence of alkaline cations or an addition of peptide solution. [7] The fibers form ionic interactions with each other to form checkerboard-like matrices, which develop into a scaffold hydrogel with a high water content of larger than 99.5–99.9% [8] and pores of 10–200 nm in diameter. [7] These hydrogels allow neurite outgrowth and therefore can be used as scaffolds for tissue engineering. [15]

Surfactant peptides

Surfactant–like peptides that undergo self-assembly in water to form nanotubes and nanovesicles have been designed using natural lipids as guides. [7] [9] [10] [13] This class of peptides has a hydrophilic head (with one or two charged amino acids such as aspartic or glutamic acids, or lysine or histidine acids) with a hydrophobic tail (with 4 or more hydrophobic amino acids such as alanine, valine, or leucine). The peptide monomers are about 2-3 nm long and consist of seven or eight amino acids; the peptide length can be adjusted by adding or removing acids. [16]

In water, surfactant peptides undergo self-assembling to form well-ordered nanotubes and nanovesicles of 30–50 nm through intermolecular hydrogen bonds and the packing of the hydrophobic tails in between the residues, [7] like micelle formation. Transmission electron microscopy examination on quick-frozen samples of surfactant-peptide structures showed helical open-ended nanotubes. The samples also showed dynamic behaviours and some vesicle "buds" sprouting out of the peptide nanotubes. [7]

Molecular paint or carpet peptides

This class of peptides undergoes self-assembling on a surface and form monolayers just few nanometers thick. [7] These types of molecular "paint" or "carpet" peptides are able to form cell patterns, interacting with or trapping other molecules onto the surface. [7] This class of peptides consists of three segments: the head is a ligand part, which has functional groups attached for recognition by other molecules or cell surface receptors; the middle segment is a "linker", allows the head to interact at a distance away from the surface [7] and which also controls the flexibility and the rigidity of the peptide structure; [7] and, at the other end of the linker, a surface anchor where a chemical group on the peptide forms a covalent bond with a particular surface. [7] This class of peptides has the unique property of being able to change molecular structure dramatically. [7] This property is best illustrated using an example. The DAR16-IV peptide, has 16 amino acids and forms a 5 nm β-sheet structure at ambient temperatures; a swift change in structure occurs at high temperature or a change in pH when a 2.5 nm α-helix forms. [7]

Cyclic peptides

Extensive research has been performed on nanotubes formed by stacking cyclic peptides with an even number of alternating D and L amino acids. [11] These nanotubes are the narrowest formed by peptides. The stacking occurs through intermolecular hydrogen bonding, and the end product is a cylindrical structure with the amino acid side chains of the peptide defining the properties of the outer surface of the tube [11] and the peptide backbone determining the properties of the inner surface of the tube. [11] Polymers can also be covalently attached to the peptides, in which case a polymer shell around the nanotube can be formed. By applying peptide design, the inner diameter, which is completely uniform, can be specified; the outer surface properties can also be affected by peptide design. Therefore, these cyclic nanotubes can form in a range of different environments. [11]

Property evaluation

One should evaluate the properties (mechanical, electronic, optical, magnetic, etc.) of the material that has been chosen and indicate what the major differences would be if the same material were not at nanoscale. Nanotubes formed from dipeptides are stable under extreme conditions. Dry nanotubes do not degrade until 200 °C; nanotubes display exceptional chemical stability at a range of pH and in the presence of organic solvents. This is a marked difference from natural biological systems, which are often unstable and sensitive to temperature and chemical conditions.

Indentation-atomic-force-microscopy experiments showed that dry nanotubes on mica have an average stiffness of 160 N/m and a high Young's modulus of 19–27 GPa. [11] Although they are less stiff than carbon and non-carbon nanotubes, with these values these nanotubes are amongst some of the stiffest known biological materials. [11] The mechanisms which facilitates the mechanical stiffness has been suggested to be the intermolecular hydrogen bonds and rigid aromatic side chains on the peptides. [11] Apart from those made by cyclic peptides, the nanotubes' inner and outer surface properties have not yet been successfully independently modified. [11] Hence, it presents a limitation that the inner and outer tube surfaces are identical.

Molecular assembly mostly occurs through weak non-covalent bonds, which include: hydrogen bonds, ionic bonds, van der Waals interactions, and hydrophobic interactions.

Self-assembling peptides versus carbon nanotubes

Carbon nanotubes (CNTs) are another type of nanomaterial that have attracted much interest for their potential to serve as building blocks for bottom-up applications. They have excellent mechanical, electrical, and thermal properties and can be fabricated to a wide range of nanoscale diameters, making them attractive and appropriate for the development of electronic and mechanical devices. [17] They demonstrate metal-like properties and can act as remarkable conductors.

However, there are several areas where peptides have advantages over CNTs. One advantage is that peptides have almost limitless chemical functionality compared with the very limited chemical interactions that CNTs can perform due to their non-reactiveness. [17] Furthermore, CNTs exhibits strong hydrophobicity which results in a tendency to clump in aqueous solutions [17] and therefore have limited solubility; their electrical properties are also affected by humidity, and the presence of oxygen, N2O, and NH3. [11]

It is also difficult to produce CNTs with uniform properties and this poses serious drawbacks as the reproducibility of precise structural properties is a key concern for commercial purposes. Lastly, CNTs are expensive, with prices in the range of hundreds of dollars per gram, rendering most applications commercially unviable. [17]

Present and future applications

The appeal of designer peptides is that they are structurally simple and are simple and affordable to produce a large scale. [7]

Cell culturing

Peptide scaffolds formed from LEGO peptides have been used extensively for 3D cell culturing as they closely resemble the porosity and the structure of extra-cellular matrices. [3] These scaffolds have also been used in cell proliferation and differentiation into desired cell types. [7] Experimentations with rat neurons demonstrated the usefulness of LEGO peptides in cell culturing. Rat neurons that were attached to the peptides projected functional axons that followed the contours of the peptide scaffolds. [7]

Biomedical applications

By examining the behaviours of the molecular 'switch' peptides, more information about interactions between proteins and, more significantly, the pathogenesis of some protein conformational diseases can be obtained. These diseases include scrapie, kuru, Huntington's, Parkinson's and Alzheimer's. [7]

Self-assembling and surfactant peptides can be used as targeting delivery systems for genes, [18] drugs [19] and RNAi. [20] [21] Research has already shown that cationic dipeptides NH2-Phe-Phe-NH2 nanovesicles, which are about 100 nm in diameter, can be absorbed into cells through endocytosis and deliver oligonucleotides into the cell; [11] this is one example of how peptide nanostructure can in used in gene and drug delivery. It is also envisaged that water-soluble molecules and biological molecules would be able to be delivered to cells in this way. [11] Self-assembling LEGO peptides can form biologically compatible scaffolds for tissue repair and engineering, [17] which should be of great potential, as a large number of diseases cannot be cured by small molecule drugs; a cell-based therapy approach is needed and peptides could potentially play a huge role in this. [17] Cyclic peptide nanotubes formed from self-assembly can act as ion channels, which form pores through the cell membrane and cause cellular osmotic collapse. Peptide can be designed to preferentially form on bacterial cell membranes and thus these tubes can perform as antibacterial and cytotoxin agents. [11] [17]

Molecular electronics applications

Molecular 'switch' peptides can be made into nanoswitches when an electronic component is incorporated. [7] Metal nanocrystals can be covalently linked to the peptides to make them electronically responsive; research is currently being conducted on how to develop electronically controlled molecules and molecular 'machines' using such molecular 'switches'. [7] Peptide nanofibers can also be used as growth templates for a range of inorganic materials, such as silver, gold, platinum, cobalt, nickel, and various semiconducting materials. [6] Electrons transferring aromatic moieties can also be attached to the side chains of peptides to form conducting nanostructures that can transfer electrons in a certain direction. [17] Metal and semiconductor binding peptides have been used for the fabrication of nanowires. [6] Peptides self-assemble into hollow nanotubes to act as casting molds; metal ions that migrate inside the tube undergo reduction to metallic form. The peptide 'mold' can then be enzymatically destroyed to produce a metal nanowire of about 20 nm diameter. [17] This has been done making gold nanowires and this application is especially significant because nanowires at this scale cannot be made by lithography. Researchers have also successfully developed multi-layer nanocables with a silver core nanowire, a peptide insulation layer, and a gold outer coat. [11] This is done by reducing AgNO3 inside nanotubes, and then bounding a layer of thiol-containing peptides with gold particles attached. [11] This layer acts as a nucleation site during the next step, where a process of electroless deposition layers a coating of gold on the nanotubes to form metal-insulator-metal trilayer coaxial nanocables. [11] Peptide nanotubes are able to produce nanowires of uniform size, and this is particularly useful in the nano-electric applications as electrical and magnetic properties are sensitive to size. [11]

Nanotubes' exceptional mechanical strength and stability makes them excellent materials for application in this area. Nanotubes have also been used in developing electrochemical biosensing platforms and have proved to have great potential. Dipeptide nanotubes deposited on graphite electrodes improved electrode sensitivity; thiol-modified nanotubes deposited on gold with a coating of enzymes improved sensitivity and reproducibility for the detection of glucose and ethanol, as well as a shortened detection time, large current density, and improved stability. [11] Nanotubes have also been successfully coated with proteins, nanocrystals, and metalloporphyrin through hydrogen bonding, and these coated tubes have great potential as chemical sensors. [11]

Designed peptides with a known structure that would self-assemble into a regular growth template would enable the self-assembly of nanoscale electronic circuits and devices. However, one issue that has yet to be resolved is the ability to control the positioning of the nanostructures. This positioning relative to substrates, to each other, and to other functional components is crucial. Although progress has been made in this domain, more work has to be completed before this control can be established. [11]

Miscellaneous applications

Molecular carpet/paint peptides can be used in diverse industries. They can be used as 'nano-organizers' for non-biological materials, or could be used to study cell-cell communications and behavior. [7] It has also been found that the catalytic abilities of the lipase enzyme is greatly improved when encapsulated in a peptide nanotube. [11] After incubation in a nanotube for a week, the catalytic activities of the enzyme is improved by 33%, compared with free-standing lipases at room temperature; at 65 °C the improvement rises to 70%. It is suggested that the enhanced ability is due to a conformational change to an enzymatically active structure. [11]

Limitations

Although well ordered nanostructures have already been successfully formed from self-assembling peptides, their potential will not be fully fulfilled until useful functionality is incorporated into the structures.

Moreover, so far most of the peptide structures formed are in one or two dimensions. In contrast, in nature, most biological structures are in three dimensions. [17] Critism has come because there is a lack of theoretical knowledge about the self-assembling behaviours of peptides. Further knowledge could prove to be very useful in facilitating rational designs and precise control of the peptide assemblies. Lastly, although an extensive amount of work is being conducted on developing self-assembling peptide-related applications, issues such as commercial viability and processability have not been paid the same amount of attention. Yet these issues must be assessed if further useful applications are to be realized.

Related Research Articles

<span class="mw-page-title-main">Nanotechnology</span> Field of science involving control of matter on atomic and (supra)molecular scales

Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. This definition of nanotechnology includes all types of research and technologies that deal with these special properties. It is common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to research and applications whose common trait is scale. An earlier understanding of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabricating macroscale products, now referred to as molecular nanotechnology.

<span class="mw-page-title-main">Peptide</span> Short chains of 2–50 amino acids

Peptides are short chains of amino acids linked by peptide bonds. A polypeptide is a longer, continuous, unbranched peptide chain. Polypeptides that have a molecular mass of 10,000 Da or more are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides.

<span class="mw-page-title-main">Peptide bond</span> Covalent chemical bond between amino acids in a peptide or protein chain

In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 of one alpha-amino acid and N2 of another, along a peptide or protein chain.

<span class="mw-page-title-main">Hydrogel</span> Soft water-rich polymer gel

A hydrogel is a biphasic material, a mixture of porous, permeable solids and at least 10% by weight or volume of interstitial fluid composed completely or mainly by water. In hydrogels the porous permeable solid is a water insoluble three dimensional network of natural or synthetic polymers and a fluid, having absorbed a large amount of water or biological fluids. These properties underpin several applications, especially in the biomedical area. Many hydrogels are synthetic, but some are derived from nature. The term 'hydrogel' was coined in 1894.

<span class="mw-page-title-main">Nanomaterials</span> Materials whose granular size lies between 1 and 100 nm

Nanomaterials describe, in principle, chemical substances or materials of which a single unit is sized between 1 and 100 nm.

A coiled coil is a structural motif in proteins in which 2–7 alpha-helices are coiled together like the strands of a rope. They have been found in roughly 5-10% of proteins and have a variety of functions. They are one of the most widespread motifs found in protein-protein interactions. To aid protein study, several tools have been developed to predict coiled-coils in protein structures. Many coiled coil-type proteins are involved in important biological functions, such as the regulation of gene expression — e.g., transcription factors. Notable examples are the oncoproteins c-Fos and c-Jun, as well as the muscle protein tropomyosin.

<span class="mw-page-title-main">M13 bacteriophage</span> Species of virus

M13 is one of the Ff phages, a member of the family filamentous bacteriophage (inovirus). Ff phages are composed of circular single-stranded DNA (ssDNA), which in the case of the m13 phage is 6407 nucleotides long and is encapsulated in approximately 2700 copies of the major coat protein p8, and capped with about 5 copies each of four different minor coat proteins. The minor coat protein p3 attaches to the receptor at the tip of the F pilus of the host Escherichia coli. The life cycle is relatively short, with the early phage progeny exiting the cell ten minutes after infection. Ff phages are chronic phage, releasing their progeny without killing the host cells. The infection causes turbid plaques in E. coli lawns, of intermediate opacity in comparison to regular lysis plaques. However, a decrease in the rate of cell growth is seen in the infected cells. The replicative form of M13 is circular double-stranded DNA similar to plasmids that are used for many recombinant DNA processes, and the virus has also been used for phage display, directed evolution, nanostructures and nanotechnology applications.

<span class="mw-page-title-main">Nanostructure</span> Nanoscale structure of material

A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale.

<span class="mw-page-title-main">Surfactin</span> Chemical compound

Surfactin is a cyclic lipopeptide, commonly used as an antibiotic for its capacity as a surfactant. It is an amphiphile capable of withstanding hydrophilic and hydrophobic environments. The Gram-positive bacterial species Bacillus subtilis produces surfactin for its antibiotic effects against competitors. Surfactin showcases antibacterial, antiviral, antifungal, and hemolytic effects.

<span class="mw-page-title-main">Hydrophobin</span>

Hydrophobins are a group of small cysteine-rich proteins that were discovered in filamentous fungi that are lichenized or not. Later similar proteins were also found in Bacteria. Hydrophobins are known for their ability to form a hydrophobic (water-repellent) coating on the surface of an object. They were first discovered and separated in Schizophyllum commune in 1991. Based on differences in hydropathy patterns and biophysical properties, they can be divided into two categories: class I and class II. Hydrophobins can self-assemble into a monolayer on hydrophilic:hydrophobic interfaces such as a water:air interface. Class I monolayer contains the same core structure as amyloid fibrils, and is positive to Congo red and thioflavin T. The monolayer formed by class I hydrophobins has a highly ordered structure, and can only be dissociated by concentrated trifluoroacetate or formic acid. Monolayer assembly involves large structural rearrangements with respect to the monomer.

In polymer chemistry and materials science, the term "polymer" refers to large molecules whose structure is composed of multiple repeating units. Supramolecular polymers are a new category of polymers that can potentially be used for material applications beyond the limits of conventional polymers. By definition, supramolecular polymers are polymeric arrays of monomeric units that are connected by reversible and highly directional secondary interactions–that is, non-covalent bonds. These non-covalent interactions include van der Waals interactions, hydrogen bonding, Coulomb or ionic interactions, π-π stacking, metal coordination, halogen bonding, chalcogen bonding, and host–guest interaction. The direction and strength of the interactions are precisely tuned so that the array of molecules behaves as a polymer in dilute and concentrated solution, as well as in the bulk.

Hydrophobicity scales are values that define the relative hydrophobicity or hydrophilicity of amino acid residues. The more positive the value, the more hydrophobic are the amino acids located in that region of the protein. These scales are commonly used to predict the transmembrane alpha-helices of membrane proteins. When consecutively measuring amino acids of a protein, changes in value indicate attraction of specific protein regions towards the hydrophobic region inside lipid bilayer.

<span class="mw-page-title-main">DNA nanotechnology</span> The design and manufacture of artificial nucleic acid structures for technological uses

DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells. Researchers in the field have created static structures such as two- and three-dimensional crystal lattices, nanotubes, polyhedra, and arbitrary shapes, and functional devices such as molecular machines and DNA computers. The field is beginning to be used as a tool to solve basic science problems in structural biology and biophysics, including applications in X-ray crystallography and nuclear magnetic resonance spectroscopy of proteins to determine structures. Potential applications in molecular scale electronics and nanomedicine are also being investigated.

<span class="mw-page-title-main">Peptide amphiphile</span>

Peptide amphiphiles (PAs) are peptide-based molecules that self-assemble into supramolecular nanostructures including; spherical micelles, twisted ribbons, and high-aspect-ratio nanofibers. A peptide amphiphile typically comprises a hydrophilic peptide sequence attached to a lipid tail, i.e. a hydrophobic alkyl chain with 10 to 16 carbons. Therefore, they can be considered a type of lipopeptide. A special type of PA, is constituted by alternating charged and neutral residues, in a repeated pattern, such as RADA16-I. The PAs were developed in the 1990s and the early 2000s and could be used in various medical areas including: nanocarriers, nanodrugs, and imaging agents. However, perhaps their main potential is in regenerative medicine to culture and deliver cells and growth factors.

<span class="mw-page-title-main">Self-assembly of nanoparticles</span> Physical phenomenon

Nanoparticles are classified as having at least one of its dimensions in the range of 1-100 nanometers (nm). The small size of nanoparticles allows them to have unique characteristics which may not be possible on the macro-scale. Self-assembly is the spontaneous organization of smaller subunits to form larger, well-organized patterns. For nanoparticles, this spontaneous assembly is a consequence of interactions between the particles aimed at achieving a thermodynamic equilibrium and reducing the system’s free energy. The thermodynamics definition of self-assembly was introduced by Professor Nicholas A. Kotov. He describes self-assembly as a process where components of the system acquire non-random spatial distribution with respect to each other and the boundaries of the system. This definition allows one to account for mass and energy fluxes taking place in the self-assembly processes.

Directed assembly of micro- and nano-structures are methods of mass-producing micro to nano devices and materials. Directed assembly allows the accurate control of assembly of micro and nano particles to form even the most intricate and highly functional devices or materials.

Dr. Jiban Jyoti Panda is an Indian scientist specializing in the field of nano-biotechnology. She has been awarded numerous awards in recognition for her work including the UNESCO - L`Oreal For Women in Science Fellowship, which recognizes the achievements of exceptional women across the globe.

A proteolipid is a protein covalently linked to lipid molecules, which can be fatty acids, isoprenoids or sterols. The process of such a linkage is known as protein lipidation, and falls into the wider category of acylation and post-translational modification. Proteolipids are abundant in brain tissue, and are also present in many other animal and plant tissues. They include ghrelin, a peptide hormone associated with feeding. Many proteolipids have bound fatty acid chains, which often provide an interface for interacting with biological membranes and act as lipidons that direct proteins to specific zones.

Shuguang Zhang is an American biochemist. He is at the MIT Media Lab's Laboratory for Molecular Architecture. Shuguang Zhang's research focuses on designs of biological molecules, particularly proteins and peptides. He has published over 170 scientific papers, which have cumulatively been cited over 35,000 times with an h-index of 88. On the “Updated science-wide author databases of standardizes citation indicators”, he is ranked 18th worldwide in the field of Biomedical Engineering. Zhang is also a co-founder and board member of Molecular Frontiers Foundation, which organizes annual Molecular Frontiers Symposia in Sweden and around the world. The selected winners are awarded Molecular Frontiers Inquiry Prize.

Peptide therapeutics are peptides or polypeptides which are used to for the treatment of diseases. Naturally occurring peptides may serve as hormones, growth factors, neurotransmitters, ion channel ligands, and anti-infectives; peptide therapeutics mimic such functions. Peptide Therapeutics are seen as relatively safe and well-tolerated as peptides can be metabolized by the body.

References

  1. Zhang, Shuguang; et al. (1993). "Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane" (PDF). Proc. Natl. Acad. Sci. USA. 90 (8): 3334–3338. Bibcode:1993PNAS...90.3334Z. doi: 10.1073/pnas.90.8.3334 . PMC   46294 . PMID   7682699.
  2. Zhang, Shuguang (2003). "Fabrication of novel materials through molecular self-assembly". Nature Biotechnology. 21 (10): 1171–1178. doi:10.1038/nbt874. PMID   14520402. S2CID   54485012.
  3. 1 2 Zhang, Shuguang; et al. (1995). "Self-complementary oligopeptide matrices support mammalian cell attachment". Biomaterials. 16 (18): 1385–1393. doi:10.1016/0142-9612(95)96874-Y. PMID   8590765.
  4. Zhang, Shuguang (2004). "Beyond the Petri dish" (PDF). Nature Biotechnology. 22 (2): 151–152. doi:10.1038/nbt0204-151. PMID   14755282. S2CID   36391864.
  5. Ardejani, Maziar S.; Orner, Brendan P. (2013-05-03). "Obey the Peptide Assembly Rules". Science. 340 (6132): 561–562. Bibcode:2013Sci...340..561A. doi:10.1126/science.1237708. ISSN   0036-8075. PMID   23641105. S2CID   206548864.
  6. 1 2 3 4 5 Dinca, V.; et al. (2007). "Directed Three-Dimensional Patterning of Self-Assembled Peptide Fibrils". Nano Letters. 8 (2): 538–543. doi:10.1021/nl072798r. PMID   18154365.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Zhang, S (2003). "Building from the bottom up". Materials Today . 6 (5): 20–27. doi: 10.1016/s1369-7021(03)00530-3 .
  8. 1 2 3 4 Xiaojun, Z.; Shuguang, Z. (2007). "Designer Self-Assembling Peptide Materials". Macromolecular Bioscience. 7 (1): 13–22. doi:10.1002/mabi.200600230. PMID   17225214.
  9. 1 2 3 Vauthey, Sylvain; et al. (2002). "Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles". Proc. Natl. Acad. Sci. USA. 99 (8): 5355–5360. Bibcode:2002PNAS...99.5355V. doi: 10.1073/pnas.072089599 . PMC   122773 . PMID   11929973.
  10. 1 2 3 Santoso, Steve; et al. (2002). "Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles". Nano Letters. 2 (7): 687–691. Bibcode:2002NanoL...2..687S. doi:10.1021/nl025563i. S2CID   13711848.
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Scanlon, S.; Aggeli, A. (2008). "Self-assembling peptide nanotubes". Nano Today. 3 (3–4): 22–30. doi:10.1016/S1748-0132(08)70041-0.
  12. Zhang, Shuguang (2012). "Lipid-like self-assembling peptides". Accounts of Chemical Research. 45 (12): 2142–2150. doi:10.1021/ar300034v. PMID   22720818. S2CID   19090525.
  13. 1 2 Nagai, Aki; et al. (2007). "Self-assembling behaviors of lipid-like peptides A6D and A6K". Journal of Nanoscience and Nanotechnology. 7 (7): 2246–2252. doi:10.1166/jnn.2007.647. PMID   17663237. S2CID   22518631.
  14. Smith, Andrew M.; Williams, Richard J.; Tang, Claire; Coppo, Paolo; Collins, Richard F.; Turner, Michael L.; Saiani, Alberto; Ulijn, Rein V. (July 2008). "Fmoc-Diphenylalanine Self Assembles to a Hydrogel via a Novel Architecture Based on π–π Interlocked β-Sheets". Advanced Materials. 20 (1): 37–41. doi:10.1002/adma.200701221. S2CID   97496785.
  15. Reches, M.; Gazit, E. (2006). "Molecular Self-Assembly of Peptide Nanostructures: Mechanism of Association and Potential Uses". Current Nanoscience. 2 (2): 105–111. Bibcode:2006CNan....2..105R. doi:10.2174/157341306776875802.
  16. Zhao, X., Design of self-assembling surfactant-like peptides and their applications. Current Opinion in Colloid & Interface Science, 2009. 14(5): p. 340-348.
  17. 1 2 3 4 5 6 7 8 9 10 Shoseyov, O., I. Levy, and SpringerLink (Online service), NanoBioTechnology bioinspired devices and materials of the future. 2008, Humana Press: Totowa, N.J. p. xi, 485 p.
  18. Zhao, Xiubo; Pan, Fang; Xu, Hai; Yaseen, Mohammed; Shan, Honghong; Hauser, Charlotte A. E.; Zhang, Shuguang; Lu, Jian R. (2010). "Molecular self-assembly and applications of designer peptide amphiphiles". Chemical Society Reviews. 39 (9): 3480–98. doi:10.1039/b915923c. ISSN   0306-0012. PMID   20498896.
  19. Rad-Malekshahi, Mazda; Lempsink, Ludwijn; Amidi, Maryam; Hennink, Wim E.; Mastrobattista, Enrico (2016-01-20). "Biomedical Applications of Self-Assembling Peptides". Bioconjugate Chemistry. 27 (1): 3–18. doi:10.1021/acs.bioconjchem.5b00487. ISSN   1043-1802. PMID   26473310.
  20. Heitz, Marc; Javor, Sacha; Darbre, Tamis; Reymond, Jean-Louis (2019-08-21). "Stereoselective pH Responsive Peptide Dendrimers for siRNA Transfection". Bioconjugate Chemistry. 30 (8): 2165–2182. doi:10.1021/acs.bioconjchem.9b00403. ISSN   1043-1802. PMID   31398014. S2CID   199519310.
  21. Heitz, Marc; Zamolo, Susanna; Javor, Sacha; Reymond, Jean-Louis (2020-06-17). "Fluorescent Peptide Dendrimers for siRNA Transfection: Tracking pH Responsive Aggregation, siRNA Binding, and Cell Penetration". Bioconjugate Chemistry. 31 (6): 1671–1684. doi:10.1021/acs.bioconjchem.0c00231. ISSN   1043-1802. PMID   32421327. S2CID   218689921.

Further reading