Charpy impact test

Last updated
A modern impact test machine. Pendulo de Charpy Moderno.png
A modern impact test machine.

In materials science, the Charpy impact test, also known as the Charpy V-notch test, is a standardized high strain rate test which determines the amount of energy absorbed by a material during fracture. Absorbed energy is a measure of the material's notch toughness. It is widely used in industry, since it is easy to prepare and conduct and results can be obtained quickly and cheaply. A disadvantage is that some results are only comparative. [1] The test was pivotal in understanding the fracture problems of ships during World War II. [2] [3]

Contents

The test was developed around 1900 by S. B. Russell (1898, American) and Georges Charpy (1901, French). [4] The test became known as the Charpy test in the early 1900s due to the technical contributions and standardization efforts by Charpy.

History

In 1896, S. B. Russell introduced the idea of residual fracture energy and devised a pendulum fracture test. Russell's initial tests measured un-notched samples. In 1897, Frémont introduced a test to measure the same phenomenon using a spring-loaded machine. In 1901, Georges Charpy proposed a standardized method improving Russell's by introducing a redesigned pendulum and notched sample, giving precise specifications. [5]

Definition

A vintage impact test machine. Yellow cage on the left is meant to prevent accidents during pendulum swing, pendulum is seen at rest at the bottom Kerbschlagbiegeversuch Maschine.jpg
A vintage impact test machine. Yellow cage on the left is meant to prevent accidents during pendulum swing, pendulum is seen at rest at the bottom

The apparatus consists of a pendulum of known mass and length that is dropped from a known height to impact a notched specimen of material. The energy transferred to the material can be inferred by comparing the difference in the height of the hammer before and after the fracture (energy absorbed by the fracture event).

The notch in the sample affects the results of the impact test, [6] thus it is necessary for the notch to be of regular dimensions and geometry. The size of the sample can also affect results, since the dimensions determine whether or not the material is in plane strain. This difference can greatly affect the conclusions made. [7]

The Standard methods for Notched Bar Impact Testing of Metallic Materials can be found in ASTM E23, [8] ISO 148-1 [9] or EN 10045-1 (retired and replaced with ISO 148-1), [10] where all the aspects of the test and equipment used are described in detail.

Quantitative results

The quantitative result of the impact tests the energy needed to fracture a material and can be used to measure the toughness of the material. There is a connection to the yield strength but it cannot be expressed by a standard formula. Also, the strain rate may be studied and analyzed for its effect on fracture.

The ductile-brittle transition temperature (DBTT) may be derived from the temperature where the energy needed to fracture the material drastically changes. However, in practice there is no sharp transition and it is difficult to obtain a precise transition temperature (it is really a transition region). An exact DBTT may be empirically derived in many ways: a specific absorbed energy, change in aspect of fracture (such as 50% of the area is cleavage), etc. [1]

Qualitative results

The qualitative results of the impact test can be used to determine the ductility of a material. [11] If the material breaks on a flat plane, the fracture was brittle, and if the material breaks with jagged edges or shear lips, then the fracture was ductile. Usually, a material does not break in just one way or the other and thus comparing the jagged to flat surface areas of the fracture will give an estimate of the percentage of ductile and brittle fracture. [1]

Sample sizes

According to ASTM A370, [12] the standard specimen size for Charpy impact testing is 10 mm × 10 mm × 55 mm. Subsize specimen sizes are: 10 mm × 7.5 mm × 55 mm, 10 mm × 6.7 mm × 55 mm, 10 mm × 5 mm × 55 mm, 10 mm × 3.3 mm × 55 mm, 10 mm × 2.5 mm × 55 mm. Details of specimens as per ASTM A370 (Standard Test Method and Definitions for Mechanical Testing of Steel Products).

According to EN 10045-1 (retired and replaced with ISO 148), [10] standard specimen sizes are 10 mm × 10 mm × 55 mm. Subsize specimens are: 10 mm × 7.5 mm × 55 mm and 10 mm × 5 mm × 55 mm.

According to ISO 148, [9] standard specimen sizes are 10 mm × 10 mm × 55 mm. Subsize specimens are: 10 mm × 7.5 mm × 55 mm, 10 mm × 5 mm × 55 mm and 10 mm × 2.5 mm × 55 mm.

According to MPIF Standard 40, [13] the standard unnotched specimen size is 10 mm (±0.125 mm) x 10 mm (±0.125 mm) x 55 mm (±2.5 mm).

Impact test results on low- and high-strength materials

The impact energy of low-strength metals that do not show a change of fracture mode with temperature, is usually high and insensitive to temperature. For these reasons, impact tests are not widely used for assessing the fracture-resistance of low-strength materials whose fracture modes remain unchanged with temperature. Impact tests typically show a ductile-brittle transition for high-strength materials that do exhibit change in fracture mode with temperature such as body-centered cubic (BCC) transition metals. Impact tests on natural materials (can be considered as low-strength), such as wood, are used to study the material toughness and are subjected to a number of issues that include the interaction between the pendulum and a specimen as well as higher modes of vibration and multiple contacts between pendulum tup and the specimen [14] [15] [16] .

Generally, high-strength materials have low impact energies which attest to the fact that fractures easily initiate and propagate in high-strength materials. The impact energies of high-strength materials other than steels or BCC transition metals are usually insensitive to temperature. High-strength BCC steels display a wider variation of impact energy than high-strength metal that do not have a BCC structure because steels undergo microscopic ductile-brittle transition. Regardless, the maximum impact energy of high-strength steels is still low due to their brittleness. [17]

See also

Notes

  1. 1 2 3 Meyers Marc A; Chawla Krishan Kumar (1998). Mechanical Behaviors of Materials. Prentice Hall. ISBN   978-0-13-262817-4.
  2. "The Design and Methods of Construction Of Welded Steel Merchant Vessels: Final Report of a (U.S. Navy) Board of Investigation". Welding Journal. 26 (7): 569. July 1947.
  3. Williams, M. L. & Ellinger, G. A (1948). Investigation of Fractured Steel Plates Removed from Welded Ships. National Bureau of Standards Rep.
  4. Siewert
  5. Cedric W. Richards (1968). Engineering materials science. Wadsworth Publishing Company, Inc.
  6. Kurishita H, Kayano H, Narui M, Yamazaki M, Kano Y, Shibahara I (1993). "Effects of V-notch dimensions on Charpy impact test results for differently sized miniature specimens of ferritic steel". Materials Transactions - JIM. 34 (11). Japan Institute of Metals: 1042–52. doi: 10.2320/matertrans1989.34.1042 . ISSN   0916-1821.
  7. Mills NJ (February 1976). "The mechanism of brittle fracture in notched impact tests on polycarbonate". Journal of Materials Science . 11 (2): 363–75. Bibcode:1976JMatS..11..363M. doi:10.1007/BF00551448. S2CID   136720443.
  8. ASTM E23 Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
  9. 1 2 ISO 148-1 Metallic materials - Charpy pendulum impact test - Part 1: Test method
  10. 1 2 EN 10045-1 Charpy impact test on metallic materials. Test method (V- and U-notches)
  11. Mathurt KK, Needleman A, Tvergaard V (May 1994). "3D analysis of failure modes in the Charpy impact test". Modelling and Simulation in Materials Science and Engineering. 2 (3A): 617–35. Bibcode:1994MSMSE...2..617M. doi:10.1088/0965-0393/2/3A/014. S2CID   250853994.
  12. ASTM A370 Standard Test Methods and Definitions for Mechanical Testing of Steel Products
  13. Standard Test Methods for Metal Powders and Powder Metallurgy Products. Princeton, New Jersey: Metal Powder Industries Federation. 2006. pp. 53–54. ISBN   0-9762057-3-4.
  14. Polocoșer, Tiberiu; Kasal, Bohumil; Stöckel, Frank (2017-11-01). "State-of-the-art: intermediate and high strain rate testing of solid wood". Wood Science and Technology. 51 (6): 1479–1534. doi:10.1007/s00226-017-0925-6. ISSN   1432-5225.
  15. Polocoşer, Tiberiu; Kasal, Bohumil; Hallermann, Aljoscha; Li, Xinyi (2017-03-01). "What was Timoshenko's Small-Increment Method? With an Application to Low-Velocity Impact of a Wood Beam". Journal of Dynamic Behavior of Materials. 3 (1): 45–63. doi:10.1007/s40870-017-0093-7. ISSN   2199-7454.
  16. Polocoșer, T.; Kasal, B.; Li, X. (2017-09-01). "Design of Experiment and Pitfalls of Low-Velocity Pendulum Impact Testing". Journal of Dynamic Behavior of Materials. 3 (3): 436–460. doi:10.1007/s40870-017-0123-5. ISSN   2199-7454.
  17. Courtney, Thomas H. (2000). Mechanical Behavior of Materials. Waveland Press, Inc. ISBN   978-1-57766-425-3.

Related Research Articles

<span class="mw-page-title-main">Welding</span> Fabrication process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melt the parts together and allow them to cool, causing fusion. Common alternative methods include solvent welding using chemicals to melt materials being bonded without heat, and solid-state welding processes which bond without melting, such as pressure, cold welding, and diffusion bonding.

<span class="mw-page-title-main">Ductility</span> Degree to which a material under stress irreversibly deforms before failure

Ductility is a mechanical property commonly described as a material's amenability to drawing. In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stress before failure. Ductility is an important consideration in engineering and manufacturing. It defines a material's suitability for certain manufacturing operations and its capacity to absorb mechanical overload. Some metals that are generally described as ductile include gold and copper, while platinum is the most ductile of all metals in pure form. However, not all metals experience ductile failure as some can be characterized with brittle failure like cast iron. Polymers generally can be viewed as ductile materials as they typically allow for plastic deformation.

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.

<span class="mw-page-title-main">Compressive strength</span> Capacity of a material or structure to withstand loads tending to reduce size

In mechanics, compressive strength is the capacity of a material or structure to withstand loads tending to reduce size. In other words, compressive strength resists compression, whereas tensile strength resists tension. In the study of strength of materials, tensile strength, compressive strength, and shear strength can be analyzed independently.

<span class="mw-page-title-main">Toughness</span> Material ability to absorb energy and plastically deform without fracturing

In materials science and metallurgy, toughness is the ability of a material to absorb energy and plastically deform without fracturing. Toughness is the strength with which the material opposes rupture. One definition of material toughness is the amount of energy per unit volume that a material can absorb before rupturing. This measure of toughness is different from that used for fracture toughness, which describes the capacity of materials to resist fracture. Toughness requires a balance of strength and ductility.

<span class="mw-page-title-main">Brittleness</span> Liability of breakage from stress without significant plastic deformation

A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Breaking is often accompanied by a sharp snapping sound.

<span class="mw-page-title-main">Hydrogen embrittlement</span> Reduction in ductility of a metal exposed to hydrogen

Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate solid metals. Once absorbed, hydrogen lowers the stress required for cracks in the metal to initiate and propagate, resulting in embrittlement. Hydrogen embrittlement occurs most notably in steels, as well as in iron, nickel, titanium, cobalt, and their alloys. Copper, aluminium, and stainless steels are less susceptible to hydrogen embrittlement.

<span class="mw-page-title-main">Residual stress</span> Stresses which remain in a solid material after the original cause is removed

In materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.

<span class="mw-page-title-main">Impact (mechanics)</span> Great force or shock applied over a short time period during a high-speed collision

In mechanics, an impact is when two bodies collide. During this collision, both bodies decelerate. The deceleration causes a high force or shock, applied over a short time period. A high force, over a short duration, usually causes more damage to both bodies than a lower force applied over a proportionally longer duration.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

<span class="mw-page-title-main">Izod impact strength test</span> Equipment and procedure to determine materials impact resistance

The Izod impact strength test is an ASTM standard method of determining the impact resistance of materials. A pivoting arm is raised to a specific height and then released. The arm swings down hitting a notched sample, breaking the specimen. The energy absorbed by the sample is calculated from the height the arm swings to after hitting the sample. A notched sample is generally used to determine impact energy and notch sensitivity.

Liquid metal embrittlement is a phenomenon of practical importance, where certain ductile metals experience drastic loss in tensile ductility or undergo brittle fracture when exposed to specific liquid metals. Generally, tensile stress, either externally applied or internally present, is needed to induce embrittlement. Exceptions to this rule have been observed, as in the case of aluminium in the presence of liquid gallium. This phenomenon has been studied since the beginning of the 20th century. Many of its phenomenological characteristics are known and several mechanisms have been proposed to explain it. The practical significance of liquid metal embrittlement is revealed by the observation that several steels experience ductility losses and cracking during hot-dip galvanizing or during subsequent fabrication. Cracking can occur catastrophically and very high crack growth rates have been measured.

<span class="mw-page-title-main">Three-point flexural test</span> Standard procedure for measuring modulus of elasticity in bending

The three-point bending flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine with a three-point or four-point bend fixture. The main advantage of a three-point flexural test is the ease of the specimen preparation and testing. However, this method has also some disadvantages: the results of the testing method are sensitive to specimen and loading geometry and strain rate.

George Rankin Irwin was an American scientist in the field of fracture mechanics and strength of materials. He was internationally known for his study of fracture of materials.

<span class="mw-page-title-main">Embrittlement</span> Loss of ductility of a material, making it brittle

Embrittlement is a significant decrease of ductility of a material, which makes the material brittle. Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment. Various materials have different mechanisms of embrittlement, therefore it can manifest in a variety of ways, from slow crack growth to a reduction of tensile ductility and toughness.

<span class="mw-page-title-main">Polymer characterization</span>

Polymer characterization is the analytical branch of polymer science.

Slow strain rate testing (SSRT), also called constant extension rate tensile testing (CERT), is a popular test used by research scientists to study stress corrosion cracking. It involves a slow dynamic strain applied at a constant extension rate in the environment of interest. These test results are compared to those for similar tests in a, known to be inert, environment. A 50-year history of the SSRT has recently been published by its creator. The test has also been standardized and two ASTM symposia devoted to it.

The notch tensile strength (NTS) of a material is the value given by performing a standard tensile strength test on a notched specimen of the material. The ratio between the NTS and the tensile strength is called the notch strength ratio (NSR).

<span class="mw-page-title-main">Notch (engineering)</span> Externally-produced indentation in a planar material

In mechanical engineering and materials science, a notch refers to a V-shaped, U-shaped, or semi-circular defect deliberately introduced into a planar material. In structural components, a notch causes a stress concentration which can result in the initiation and growth of fatigue cracks. Notches are used in materials characterization to determine fracture mechanics related properties such as fracture toughness and rates of fatigue crack growth.