Metal-induced embrittlement

Last updated

Metal-induced embrittlement (MIE) is the embrittlement caused by diffusion of metal, either solid or liquid, into the base material. Metal induced embrittlement occurs when metals are in contact with low-melting point metals while under tensile stress. The embrittler can be either solid (SMIE) or liquid (liquid metal embrittlement). Under sufficient tensile stress, MIE failure occurs instantaneously at temperatures just above melting point. For temperatures below the melting temperature of the embrittler, solid-state diffusion is the main transport mechanism. [1] This occurs in the following ways:

Contents

The main mechanism of transport for SMIE is surface self-diffusion of the embrittler over a layer of embrittler that’s thick enough to be characterized as self-diffusion at the crack tip. [1] In comparison, LMIE dominant mechanism is bulk liquid flow that penetrates at the tips of cracks.

Examples

Studies have shown that Zn, Pb, Cd, Sn and In can embrittle steel at temperature below each embrittler’s melting point.

Mechanics and temperature dependence

Similar to liquid metal embrittlement (LME), solid metal-induced embrittlement results in a decrease in fracture strength of a material. In addition, a decrease in tensile ductility over a temperature range is indicative of metal-induced embrittlement. Although SMIE is greatest just below the embrittler’s melting temperature, the range over which SMIE occurs ranges from 0.75 × Tm to Tm, where Tm is the melting temperature of the embrittler. [4] The reduction in ductility is caused by formation and propagation of stable, subcritical intergranular cracks. SMIE produces both intergranular and transgranular fracture surfaces in otherwise ductile materials. [4]

Kinetics of crack onset and propagation via SMIE

Crack extension, as opposed to crack onset, is the rate determining step for solid induced-metal embrittlement. The main mechanism leading to solid metal induced embrittlement is multilayer surface self-diffusion of the embrittler at the crack tip. [1] [4] [5] Propagation rate of a crack undergoing metal-induced embrittlement is a function of the supply of embrittler present at the crack tip. Crack velocities in SMIE are much slower than LMIE velocities. [5] Catastrophic failure of a material via SMIE occurs as a result of the propagation of cracks to a critical point. To this end, the propagation of the crack is controlled by the transport rate and mechanisms of the embrittler at the tip of nucleated cracks. SMIE can be mitigated by increasing the tortuosity of crack paths such that resistance to intergranular cracking increases.

Susceptibility

SMIE is less common that LMIE and much less common that other failure mechanisms such as hydrogen embrittlement, fatigue, and stress-corrosion cracking. Still, embrittlement mechanisms can be introduced during fabrication, coatings, testing or during service of the material components. Susceptibility for SMIE increases with the following material characteristics:

Related Research Articles

Ductility Degree to which a material under stress irreversibly deforms before failure

Ductility is a mechanical property commonly described as a material's amenability to drawing. In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stress before failure. Ductility is an important consideration in engineering and manufacturing, defining a material's suitability for certain manufacturing operations and its capacity to absorb mechanical overload. Some metals that are generally described as ductile include gold and copper. However, not all metals experience ductile failure as some can be characterized with brittle failure like cast iron. Polymers generally can be viewed as ductile materials as they typically allow for plastic deformation.

Fracture Split of materials or structures under stress

Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band or dislocation.

Brazing High-temperature soldering; metal-joining technique by high-temperature molten metal filling

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

Creep (deformation) Tendency of a solid material to move slowly or deform permanently under mechanical stress

In materials science, creep is the tendency of a solid material to move slowly or deform permanently under the influence of persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increases as they near their melting point.

Hydrogen embrittlement Embrittlement of a metal exposed to hydrogen

Hydrogen embrittlement (HE) also known as hydrogen assisted cracking or hydrogen-induced cracking, describes the embrittlement of a metal by hydrogen. The essential facts about the nature of the hydrogen embrittlement of steels have now been known for 140 years. It is atomic hydrogen that is harmful to the toughness of iron and steel. It is a low temperature effect: most metals are relatively immune to hydrogen embrittlement above approximately 150°C.

Reactor pressure vessel Nuclear power plant component

A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core.

Stress corrosion cracking Growth of cracks in a corrosive environment

Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SCC is highly chemically specific in that certain alloys are likely to undergo SCC only when exposed to a small number of chemical environments. The chemical environment that causes SCC for a given alloy is often one which is only mildly corrosive to the metal. Hence, metal parts with severe SCC can appear bright and shiny, while being filled with microscopic cracks. This factor makes it common for SCC to go undetected prior to failure. SCC often progresses rapidly, and is more common among alloys than pure metals. The specific environment is of crucial importance, and only very small concentrations of certain highly active chemicals are needed to produce catastrophic cracking, often leading to devastating and unexpected failure.

Intergranular fracture

Intergranular fracture, intergranular cracking or intergranular embrittlement occurs when a crack propagates along the grain boundaries of a material, usually when these grain boundaries are weakened. The more commonly seen transgranular fracture, occurs when the crack grows through the material grains. As an analogy, in a wall of bricks, intergranular fracture would correspond to a fracture that takes place in the mortar that keeps the bricks together.

Fracture toughness Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

Hydrogen damage is the generic name given to a large number of metal degradation processes due to interaction with hydrogen atoms. Note that molecular gaseous hydrogen does not have the same effect as atoms or ions released into solid solution in the metal.

In materials science, environmental stress fracture or environment assisted fracture is the generic name given to premature failure under the influence of tensile stresses and harmful environments of materials such as metals and alloys, composites, plastics and ceramics.

Liquid metal embrittlement (LME), also known as liquid metal induced embrittlement, is a phenomenon of practical importance, where certain ductile metals experience drastic loss in tensile ductility or undergo brittle fracture when exposed to specific liquid metals. Generally, a tensile stress, either externally applied or internally present, is needed to induce embrittlement. Exceptions to this rule have been observed, as in the case of aluminium in the presence of liquid gallium. This phenomenon has been studied since the beginning of the 20th century. Many of its phenomenological characteristics are known and several mechanisms have been proposed to explain it. The practical significance of liquid metal embrittlement is revealed by the observation that several steels experience ductility losses and cracking during hot-dip galvanizing or during subsequent fabrication. Cracking can occur catastrophically and very high crack growth rates have been measured.

Embrittlement Loss of ductility of a material, making it brittle

Embrittlement is a significant decrease of ductility of a material, which makes the material brittle. Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment. Various materials have different mechanisms of embrittlement, therefore it can manifest in a variety of ways, from slow crack growth to a reduction of tensile ductility and toughness.

In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions, whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as particle segregation in granular materials, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science, to the stabilization of colloidal suspensions.

Environmental stress cracking Brittle failure of thermoplastic polymers

Environmental Stress Cracking (ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers known at present. According to ASTM D883, stress cracking is defined as "an external or internal crack in a plastic caused by tensile stresses less than its short-term mechanical strength". This type of cracking typically involves brittle cracking, with little or no ductile drawing of the material from its adjacent failure surfaces. Environmental stress cracking may account for around 15-30% of all plastic component failures in service. This behavior is especially prevalent in glassy, amorphous thermoplastics. Amorphous polymers exhibit ESC because of their loose structure which makes it easier for the fluid to permeate into the polymer. Amorphous polymers are more prone to ESC at temperature higher than their glass transition temperature (Tg) due to the increased free volume. When Tg is approached, more fluid can permeate into the polymer chains.

Low hydrogen annealing, commonly known as "baking" is a heat treatment in metallurgy for the reduction or elimination of hydrogen in a material to prevent hydrogen embrittlement. Hydrogen embrittlement is the hydrogen-induced cracking of metals, particularly steel which results in degraded mechanical properties such as plasticity, ductility and fracture toughness at low temperature. Low hydrogen annealing is called a de-embrittlement process. Low hydrogen annealing is an effective method compared to alternatives such as electroplating the material with zinc to provide a barrier for hydrogen ingress which results in coating defects.

Dynamic strain aging (DSA) for materials science is an instability in plastic flow of materials, associated with interaction between moving dislocations and diffusing solutes. Although sometimes dynamic strain aging is used interchangeably with the Portevin–Le Chatelier effect, dynamic strain aging refers specifically to the microscopic mechanism that induces the Portevin–Le Chatelier effect. This strengthening mechanism is related to solid-solution strengthening and has been observed in a variety of fcc and bcc substitutional and interstitial alloys, metalloids like silicon, and ordered intermetallics within specific ranges of temperature and strain rate.

Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.


When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.

Static fatigue describes the fracture that happens at a stress level that is less than that required to cause an ordinary tensile fracture. It is a manifestation of the possible adverse effects of the environment on the behaviour of materials. This term highlights the contribution of the environment to the crack propagation in materials that are under applied or residual stress, which leads to stress concentration and thus stress fatigue. It is also called “delayed fracture”, referring to the long period of time the crack takes to grow large enough to cause spontaneous failure. It is a form of material embrittlement, and occurs in various materials and diverse environments.

References

  1. 1 2 3 P. Gordon, "Metal-Induced embrittlement of metals—an evaluation of embrittler transport mechanisms" Metallurgical Transactions A, 9, p. 267 (1978). https://doi.org/10.1007/BF02646710
  2. D.N. Fager and W.F. Spurr, "Solid cadmium embrittlement: Titanium alloys, Corrosion," 26, 409, (1970).
  3. N,A. Tiner, A study of fracturing behavior of cop- per and zinc coated with mercury, Trans. AIME, 221 (1961) 261.
  4. 1 2 3 4 J.C. Lynn, W.R. Warke, P.Gordon, "Solid Metal-Induced Embrittlement of Steel," Materials Science and Engineering, Elsevier, 18, p. 51-62,,(1974) doi.org/10.1016/0025-5416(75)90072-5.
  5. 1 2 3 4 5 Lynch, S.P. (April 1992). "Metal-induced embrittlement of materials". Materials Characterization. 28 (3): 279–289. doi:10.1016/1044-5803(92)90017-c. ISSN   1044-5803.