Liquid metal embrittlement

Last updated

Liquid metal embrittlement (also known as LME and liquid metal induced embrittlement) is a phenomenon of practical importance, where certain ductile metals experience drastic loss in tensile ductility or undergo brittle fracture when exposed to specific liquid metals. Generally, tensile stress, either externally applied or internally present, is needed to induce embrittlement. Exceptions to this rule have been observed, as in the case of aluminium in the presence of liquid gallium. [1] This phenomenon has been studied since the beginning of the 20th century. Many of its phenomenological characteristics are known and several mechanisms have been proposed to explain it. [2] [3] The practical significance of liquid metal embrittlement is revealed by the observation that several steels experience ductility losses and cracking during hot-dip galvanizing or during subsequent fabrication. [4] Cracking can occur catastrophically and very high crack growth rates have been measured. [5]

Contents

Similar metal embrittlement effects can be observed even in the solid state, when one of the metals is brought close to its melting point; e.g. cadmium-coated parts operating at high temperature. This phenomenon is known as solid metal embrittlement. [6]

Characteristics

Mechanical behavior

Liquid metal embrittlement is characterized by the reduction in the threshold stress intensity, true fracture stress or in the strain to fracture when tested in the presence of liquid metals as compared to that obtained in air/vacuum tests. The reduction in fracture strain is generally temperature dependent and a “ductility trough” is observed as the test temperature is decreased. [2] A ductile-to-brittle transition behaviour is also exhibited by many metal couples. The shape of the elastic region of the stress-strain curve is not altered, but the plastic region may be changed during LME. Very high crack propagation rates, varying from a few centimeters per second to several meters per second are induced in solid metals by the embrittling liquid metals. An incubation period and a slow pre-critical crack propagation stage generally precede the final fracture.

Metal chemistry

It is believed that there is specificity in the solid-liquid metal combinations experiencing LME. [7] There should be limited mutual solubilities for the metal couple to cause embrittlement. Excess solubility makes sharp crack propagation difficult, but no solubility condition prevents wetting of the solid surfaces by liquid metal and prevents LME. The presence of an oxide layer on the solid metal surface also prevents good contact between the two metals and stops LME. The chemical compositions of the solid and liquid metals affect the severity of embrittlement. The addition of third elements to the liquid metal may increase or decrease the embrittlement and alter the temperature region over which embrittlement is seen. Metal combinations which form intermetallic compounds do not cause LME. There are a wide variety of LME couples. [3] Most technologically important are the LME of aluminum and steel alloys.

Metallurgy

Alloying of the solid metal alters its LME. Some alloying elements may increase the severity while others may prevent LME. The action of the alloying element is known to be segregation to grain boundaries of the solid metal and alteration of the grain boundary properties. Accordingly, maximum LME is seen in cases where alloy addition elements have saturated the grain boundaries of the solid metal. [2] The hardness and deformation behaviour of the solid metal affects its susceptibility to LME. Generally, harder metals are more severely embrittled. Grain size greatly influences LME. Solids with larger grains are more severely embrittled and the fracture stress varies inversely with the square root of grain diameter. Also the brittle to ductile transition temperature is increased by increasing grain size.

Physico-chemical properties

The interfacial energy between the solid and liquid metals and the grain boundary energy of the solid metal greatly influence LME. These energies depend upon the chemical compositions of the metal couple. [2]

Test parameters

External parameters like temperature, strain rate, stress and time of exposure to the liquid metal prior to testing affect LME. Temperature produces a ductility trough and a ductile to brittle transition behaviour in the solid metal. The temperature range of the trough as well as the transition temperature are altered by the composition of the liquid and solid metals, the structure of the solid metal and other experimental parameters. The lower limit of the ductility trough generally coincides with the melting point of the liquid metal. The upper limit is strain rate sensitive. Temperature also affects the kinetics of LME. An increase in strain rate increases the upper limit temperature as well as the crack propagation rate. In most metal couples LME does not occur below a threshold stress level.

Testing typically involves tensile specimens but more sophisticated testing using fracture mechanics specimens is also performed. [8] [9] [10] [11]

Mechanisms

Many theories have been proposed for LME. [3] The major ones are listed below;

All of these models, with the exception of Robertson, [2] [12] utilize the concept of an adsorption-induced surface energy lowering of the solid metal as the central cause of LME. They have succeeded in predicting many of the phenomenological observations. However, quantitative prediction of LME is still elusive.

Mercury embrittlement

The most common liquid metal to cause embrittlement is mercury, as it is a common contaminant in the processing of hydrocarbons in petroleum reservoirs. [19] The embrittling effects of mercury were first recognized by Pliny the Elder circa 78 AD. [20] Mercury spills present an especially significant danger for airplanes. The aluminium-zinc-magnesium-copper alloy DTD 5050B is especially susceptible. The Al-Cu alloy DTD 5020A is less susceptible. Spilled elemental mercury can be immobilized and made relatively harmless by silver nitrate. [21]

On 1 January 2004, the Moomba, South Australia, natural gas processing plant operated by Santos suffered a major fire. The gas release that led to the fire was caused by the failure of a heat exchanger (cold box) inlet nozzle in the liquids recovery plant. The failure of the inlet nozzle was due to liquid metal embrittlement of the train B aluminium cold box by elemental mercury. [22]

Liquid metal embrittlement plays a central role in the novel Killer Instinct by Joseph Finder.

In the film Big Hero 6 , Honey Lemon, voiced by Genesis Rodriguez, uses liquid metal embrittlement in her lab.

See also

Related Research Articles

<span class="mw-page-title-main">Ductility</span> Degree to which a material under stress irreversibly deforms before failure

Ductility is a mechanical property commonly described as a material's amenability to drawing. In materials science, ductility is defined by the degree to which a material can sustain plastic deformation under tensile stress before failure. Ductility is an important consideration in engineering and manufacturing. It defines a material's suitability for certain manufacturing operations and its capacity to absorb mechanical overload. Some metals that are generally described as ductile include gold and copper, while platinum is the most ductile of all metals in pure form. However, not all metals experience ductile failure as some can be characterized with brittle failure like cast iron. Polymers generally can be viewed as ductile materials as they typically allow for plastic deformation.

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

<span class="mw-page-title-main">Brittleness</span> Liability of breakage from stress without significant plastic deformation

A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Breaking is often accompanied by a sharp snapping sound.

<span class="mw-page-title-main">Hydrogen embrittlement</span> Reduction in ductility of a metal exposed to hydrogen

Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate solid metals. Once absorbed, hydrogen lowers the stress required for cracks in the metal to initiate and propagate, resulting in embrittlement. Hydrogen embrittlement occurs most notably in steels, as well as in iron, nickel, titanium, cobalt, and their alloys. Copper, aluminium, and stainless steels are less susceptible to hydrogen embrittlement.

The Portevin–Le Chatelier (PLC) effect describes a serrated stress–strain curve or jerky flow, which some materials exhibit as they undergo plastic deformation, specifically inhomogeneous deformation. This effect has been long associated with dynamic strain aging or the competition between diffusing solutes pinning dislocations and dislocations breaking free of this stoppage.

<span class="mw-page-title-main">Reactor pressure vessel</span> Nuclear power plant component

A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core.

<span class="mw-page-title-main">Stress corrosion cracking</span> Growth of cracks in a corrosive environment

Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SCC is highly chemically specific in that certain alloys are likely to undergo SCC only when exposed to a small number of chemical environments. The chemical environment that causes SCC for a given alloy is often one which is only mildly corrosive to the metal. Hence, metal parts with severe SCC can appear bright and shiny, while being filled with microscopic cracks. This factor makes it common for SCC to go undetected prior to failure. SCC often progresses rapidly, and is more common among alloys than pure metals. The specific environment is of crucial importance, and only very small concentrations of certain highly active chemicals are needed to produce catastrophic cracking, often leading to devastating and unexpected failure.

<span class="mw-page-title-main">Intergranular fracture</span>

Intergranular fracture, intergranular cracking or intergranular embrittlement occurs when a crack propagates along the grain boundaries of a material, usually when these grain boundaries are weakened. The more commonly seen transgranular fracture, occurs when the crack grows through the material grains. As an analogy, in a wall of bricks, intergranular fracture would correspond to a fracture that takes place in the mortar that keeps the bricks together.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

In materials science, environmental stress fracture or environment assisted fracture is the generic name given to premature failure under the influence of tensile stresses and harmful environments of materials such as metals and alloys, composites, plastics and ceramics.

<span class="mw-page-title-main">Embrittlement</span> Loss of ductility of a material, making it brittle

Embrittlement is a significant decrease of ductility of a material, which makes the material brittle. Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment. Various materials have different mechanisms of embrittlement, therefore it can manifest in a variety of ways, from slow crack growth to a reduction of tensile ductility and toughness.

<span class="mw-page-title-main">Environmental stress cracking</span> Brittle failure of thermoplastic polymers

Environmental Stress Cracking (ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers known at present. According to ASTM D883, stress cracking is defined as "an external or internal crack in a plastic caused by tensile stresses less than its short-term mechanical strength". This type of cracking typically involves brittle cracking, with little or no ductile drawing of the material from its adjacent failure surfaces. Environmental stress cracking may account for around 15-30% of all plastic component failures in service. This behavior is especially prevalent in glassy, amorphous thermoplastics. Amorphous polymers exhibit ESC because of their loose structure which makes it easier for the fluid to permeate into the polymer. Amorphous polymers are more prone to ESC at temperature higher than their glass transition temperature (Tg) due to the increased free volume. When Tg is approached, more fluid can permeate into the polymer chains.

Low hydrogen annealing, commonly known as "baking" is a heat treatment in metallurgy for the reduction or elimination of hydrogen in a material to prevent hydrogen embrittlement. Hydrogen embrittlement is the hydrogen-induced cracking of metals, particularly steel which results in degraded mechanical properties such as plasticity, ductility and fracture toughness at low temperature. Low hydrogen annealing is called a de-embrittlement process. Low hydrogen annealing is an effective method compared to alternatives such as electroplating the material with zinc to provide a barrier for hydrogen ingress which results in coating defects.

Dynamic strain aging (DSA) for materials science is an instability in plastic flow of materials, associated with interaction between moving dislocations and diffusing solutes. Although sometimes dynamic strain aging is used interchangeably with the Portevin–Le Chatelier effect (or serrated yielding), dynamic strain aging refers specifically to the microscopic mechanism that induces the Portevin–Le Chatelier effect. This strengthening mechanism is related to solid-solution strengthening and has been observed in a variety of fcc and bcc substitutional and interstitial alloys, metalloids like silicon, and ordered intermetallics within specific ranges of temperature and strain rate.

In materials science, toughening refers to the process of making a material more resistant to the propagation of cracks. When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.

Metal-induced embrittlement (MIE) is the embrittlement caused by diffusion of metal, either solid or liquid, into the base material. Metal induced embrittlement occurs when metals are in contact with low-melting point metals while under tensile stress. The embrittler can be either solid (SMIE) or liquid. Under sufficient tensile stress, MIE failure occurs instantaneously at temperatures just above melting point. For temperatures below the melting temperature of the embrittler, solid-state diffusion is the main transport mechanism. This occurs in the following ways:

<span class="mw-page-title-main">Striation (fatigue)</span>

Striations are marks produced on the fracture surface that show the incremental growth of a fatigue crack. A striation marks the position of the crack tip at the time it was made. The term striation generally refers to ductile striations which are rounded bands on the fracture surface separated by depressions or fissures and can have the same appearance on both sides of the mating surfaces of the fatigue crack. Although some research has suggested that many loading cycles are required to form a single striation, it is now generally thought that each striation is the result of a single loading cycle.

<span class="mw-page-title-main">475 °C embrittlement</span> Loss of plasticity in ferritic stainless steel

Duplex stainless steels are a family of alloys with a two-phase microstructure consisting of both austenitic and ferritic phases. They offer excellent mechanical properties, corrosion resistance, and toughness compared to other types of stainless steel. However, duplex stainless steel can be susceptible to a phenomenon known as 475 °C embrittlement or duplex stainless steel age hardening, which is a type of aging process that causes loss of plasticity in duplex stainless steel when it is heated in the range of 250 to 550 °C. At this temperature range, spontaneous phase separation of the ferrite phase into iron-rich and chromium-rich nanophases occurs, with no change in the mechanical properties of the austenite phase. This type of embrittlement is due to precipitation hardening, which makes the material become brittle and prone to cracking.

References

  1. Huntington, A. K. (1914). "Discussion on Report to Beilby Prize Committee". Journal of the Institute of Metals. 11 (1). London, UK: Institute of Metals: 108.
  2. 1 2 3 4 5 Joseph, B.; Picat, M. & Barbier, F. (1999). "Liquid metal embrittlement: A state-of-the-art appraisal". European Physical Journal Applied Physics . 5 (1): 19–31. Bibcode:1999EPJAP...5...19J. doi:10.1051/epjap:1999108.
  3. 1 2 3 Kolman, D. G. (2003). "Environmentally Induced Cracking, Liquid Metal Embrittlement". In Cramer, Stephen D. & Covino, Bernard S. Jr. (eds.). ASM Handbook, Volume 13A, Corrosion: Fundamentals, Testing and Protection. Materials Park, OH: ASM International. pp. 381–392. ISBN   978-0-87170-705-5.
  4. Kamdar, M. H. (1983). "Liquid Metal Embrittlement". Treatise on Materials Science and Technology. Vol. 25. Academic Press. pp. 361–459.
  5. Kolman, D.G. & Chavarria, R. (2002). "Liquid-Metal Embrittlement of 7075 Aluminum and 4340 Steel Compact Tension Specimens by Gallium". Journal of Testing and Evaluation. 30 (5): 452–456. doi:10.1520/JTE12336J.
  6. Kolman, D.G. (2003), pp. 393-397.
  7. Topic Paper SC/T/04/02: Liquid metal assisted cracking of galvanized steel work (Report). Standing Committee on Structural Safety. June 2004.
  8. Kamdar, M. H. (1984). Kamdar, M. H. (ed.). "Embrittlement by Liquid and Solid Metals". Proceedings of the Symposium. Warrendale, PA: Metallurgical Society of AIME: 149.
  9. Benson, B. A. & Hoagland, R. G. (1989). "Crack growth behavior of a high strength aluminum alloy during LME by gallium". Scripta Metallurgica . 23 (11): 1943. doi:10.1016/0036-9748(89)90487-0.
  10. Kargol, J. A. & Albright, D. L. (May 1975). "Fracture mechanics method for determining the crack propagation resistance of embrittled aluminum bicrystals". Journal of Testing and Evaluation. 3 (3): 173. doi:10.1520/JTE10649J.
  11. Kolman, D.G. & Chavarria, R. (March 2004). "Liquid-Metal Embrittlement of Type 316L Stainless Steel by Gallium as Measured by Elastic-Plastic Fracture Mechanics". Corrosion. 60 (3): 254–261. doi:10.5006/1.3287729.
  12. 1 2 Robertson, W. M. (November 1966). "Propagation of a Crack Filled with Liquid Metal". Transactions of the Metallurgical Society of AIME. 236 (11): 1478.
  13. Glikman, E.É. & Goryunov, Yu.V. (July 1978). "Mechanism of embrittlement by liquid metals and other manifestations of the Rebinder effect in metal systems". Soviet Materials Science. 14 (4): 355–364. doi:10.1007/BF01154710.
  14. Stoloff, N. S. & Johnston, T. L. (1963). "Crack propagation in a liquid metal environment". Acta Metallurgica . 11 (4): 251–256. doi:10.1016/0001-6160(63)90180-9.
  15. Westwood, A. R. C. & Kamdar, M. H. (1963). "Concerning liquid metal embrittlement, particularly of zinc monocrystals by mercury". Philosophical Magazine. 8 (89): 787–804. Bibcode:1963PMag....8..787W. doi:10.1080/14786436308213836.
  16. Gordon, Paul & An, Henry H. (March 1982). "The mechanisms of crack initiation and crack propagation in metal-induced embrittlement of metals". Metall Mater Trans A . 13 (3): 457–472. Bibcode:1982MTA....13..457G. doi:10.1007/BF02643354.
  17. Lynch, S. P. (1988). "Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process". Acta Metallurgica . 36 (10): 2639–2661. doi:10.1016/0001-6160(88)90113-7.
  18. Popovich, V. V. & Dmukhovskaya, I. G. (1987). "The embrittlement of metals and alloys being deformed in contact with low-melting alloys (A review of foreign literature)". Soviet Materials Science. 23 (6): 535–544. doi:10.1007/BF01151882.
  19. Case, Raymundo; McIntyre, Dale R. (14 March 2010). Mercury Liquid Metal Embrittlement Of Alloys For Oil And Gas Production And Processing.
  20. C. Plinius Secundus (1964) [78 AD]. Naturalis Historia[The History of the World, or The Natural History] (in Latin). Translated by Philemon Holland. McGraw Hill.
  21. Allsopp, H. J. (31 January 1977). A Chemical Treatment for Mercury Accidentally Spilled in Aircraft (Report). Royal Aircraft Establishment. Archived from the original on 27 September 2007 via DTIC.
  22. "Moomba Plant Update". Santos (Press release). Adelaide, South Australia. 5 March 2004. Archived from the original on 16 February 2013. Retrieved 18 January 2013. Alt URL: Santos (5 March 2004). "Moomba Plant Update" (Press release). Archived from the original on 24 April 2016. Retrieved 18 January 2013 via SEC.