FENE model

Last updated
An example of multi-bead FENE model Multi-bead.jpg
An example of multi-bead FENE model

In polymer physics, the finite extensible nonlinear elastic (FENE) model, also called the FENE dumbbell model, represents the dynamics of a long-chained polymer. It simplifies the chain of monomers by connecting a sequence of beads with nonlinear springs.

Contents

Its direct extension the FENE-P model, is more commonly used in computational fluid dynamics to simulate turbulent flow. The P stands for the last name of physicist Anton Peterlin, who developed an important approximation of the model in 1966. [1] The FENE-P model was introduced by Robert Byron Bird et al. in the 1980s. [2]

In 1991 the FENE-MP model (PM for modified Peterlin) was introduced and in 1988 the FENE-CR was introduced by M.D. Chilcott and J.M. Rallison. [2] [3]

Formulation

The spring force in the FENE model is given Warner's spring force, [4] as

,

where , k is the spring constant and Lmax the upper limit for the length extension. [5] Total stretching force on i-th bead can be written as .

The Werner's spring force approximate the inverse Langevin function found in other models.

FENE-P model

The FENE-P model takes the FENE model and assumes the Peterlin statistical average for the restoring force [5] as

,

where the indicates the statistical average. [2]

Advantages and disanvatages

FENE-P is one of few polymer models that can be used in computational fluid dynamics simulations since it removes the need of statistical averaging at each grid point at any instant in time. It is demonstrated to be able to capture some of the most important polymeric flow behaviors such as polymer turbulence drag reduction and shear thinning. It is the most commonly used polymer model that can be used in a turbulence simulation since direct numerical simulation of turbulence is already extremely expensive.

Due to its simplifications FENE-P is not able to show the hysteresis effects that polymers have, while the FENE model can.

Related Research Articles

<span class="mw-page-title-main">Turbulence</span> Motion characterized by chaotic changes in pressure and flow velocity

In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between those layers.

<span class="mw-page-title-main">Polymer physics</span>

Polymer physics is the field of physics that studies polymers, their fluctuations, mechanical properties, as well as the kinetics of reactions involving degradation of polymers and polymerisation of monomers.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

<span class="mw-page-title-main">Granular material</span> Conglomeration of discrete solid, macroscopic particles

A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact. The constituents that compose granular material are large enough such that they are not subject to thermal motion fluctuations. Thus, the lower size limit for grains in granular material is about 1 μm. On the upper size limit, the physics of granular materials may be applied to ice floes where the individual grains are icebergs and to asteroid belts of the Solar System with individual grains being asteroids.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

In quantum physics, Fermi's golden rule is a formula that describes the transition rate from one energy eigenstate of a quantum system to a group of energy eigenstates in a continuum, as a result of a weak perturbation. This transition rate is effectively independent of time and is proportional to the strength of the coupling between the initial and final states of the system as well as the density of states. It is also applicable when the final state is discrete, i.e. it is not part of a continuum, if there is some decoherence in the process, like relaxation or collision of the atoms, or like noise in the perturbation, in which case the density of states is replaced by the reciprocal of the decoherence bandwidth.

<span class="mw-page-title-main">Structure formation</span> Formation of galaxies, galaxy clusters and larger structures from small early density fluctuations

In physical cosmology, structure formation describes the creation of galaxies, galaxy clusters, and larger structures starting from small fluctuations in mass density resulting from processes that created matter. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies. Structure formation models gravitational instability of small ripples in mass density to predict these shapes, confirming the consistency of the physical model.

In fluid dynamics, a Cross fluid is a type of generalized Newtonian fluid whose viscosity depends upon shear rate according to the following equation:

An ideal chain is the simplest model in polymer chemistry to describe polymers, such as nucleic acids and proteins. It assumes that the monomers in a polymer are located at the steps of a hypothetical random walker that does not remember its previous steps. By neglecting interactions among monomers, this model assumes that two monomers can occupy the same location. Although it is simple, its generality gives insight about the physics of polymers.

<span class="mw-page-title-main">Attosecond physics</span> Study of physics on quintillionth-second timescales

Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond photon pulses are used to unravel dynamical processes in matter with unprecedented time resolution.

The worm-like chain (WLC) model in polymer physics is used to describe the behavior of polymers that are semi-flexible: fairly stiff with successive segments pointing in roughly the same direction, and with persistence length within a few orders of magnitude of the polymer length. The WLC model is the continuous version of the Kratky–Porod model.

<span class="mw-page-title-main">Eddy (fluid dynamics)</span> Swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime

In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.

In physics, Langevin dynamics is an approach to the mathematical modeling of the dynamics of molecular systems using the Langevin equation. It was originally developed by French physicist Paul Langevin. The approach is characterized by the use of simplified models while accounting for omitted degrees of freedom by the use of stochastic differential equations. Langevin dynamics simulations are a kind of Monte Carlo simulation.

Rubber elasticity refers to the ability of solid rubber to be stretched up to a factor of 10 from its original length, and return to close to its original length upon release. This process can be repeated many times with no apparent degradation to the rubber.

<span class="mw-page-title-main">Eddy diffusion</span> Mixing of fluids due to eddy currents

In fluid dynamics, eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which fluid substances mix together due to eddy motion. These eddies can vary widely in size, from subtropical ocean gyres down to the small Kolmogorov microscales, and occur as a result of turbulence. The theory of eddy diffusion was first developed by Sir Geoffrey Ingram Taylor.

Stokesian dynamics is a solution technique for the Langevin equation, which is the relevant form of Newton's 2nd law for a Brownian particle. The method treats the suspended particles in a discrete sense while the continuum approximation remains valid for the surrounding fluid, i.e., the suspended particles are generally assumed to be significantly larger than the molecules of the solvent. The particles then interact through hydrodynamic forces transmitted via the continuum fluid, and when the particle Reynolds number is small, these forces are determined through the linear Stokes equations. In addition, the method can also resolve non-hydrodynamic forces, such as Brownian forces, arising from the fluctuating motion of the fluid, and interparticle or external forces. Stokesian Dynamics can thus be applied to a variety of problems, including sedimentation, diffusion and rheology, and it aims to provide the same level of understanding for multiphase particulate systems as molecular dynamics does for statistical properties of matter. For rigid particles of radius suspended in an incompressible Newtonian fluid of viscosity and density , the motion of the fluid is governed by the Navier–Stokes equations, while the motion of the particles is described by the coupled equation of motion:

<span class="mw-page-title-main">Umbrella sampling</span> Sampling technique used in physics

Umbrella sampling is a technique in computational physics and chemistry, used to improve sampling of a system where ergodicity is hindered by the form of the system's energy landscape. It was first suggested by Torrie and Valleau in 1977. It is a particular physical application of the more general importance sampling in statistics.

In fluid dynamics, the Toms effect is a reduction of the drag of a turbulent flow thought a pipeline when polymer solutions are added.

Diffusing-wave spectroscopy (DWS) is an optical technique derived from dynamic light scattering (DLS) that studies the dynamics of scattered light in the limit of strong multiple scattering. It has been widely used in the past to study colloidal suspensions, emulsions, foams, gels, biological media and other forms of soft matter. If carefully calibrated, DWS allows the quantitative measurement of microscopic motion in a soft material, from which the rheological properties of the complex medium can be extracted via the microrheology approach.

In fluid dynamics and invariant theory, a Reynolds operator is a mathematical operator given by averaging something over a group action, satisfying a set of properties called Reynolds rules. In fluid dynamics, Reynolds operators are often encountered in models of turbulent flows, particularly the Reynolds-averaged Navier–Stokes equations, where the average is typically taken over the fluid flow under the group of time translations. In invariant theory, the average is often taken over a compact group or reductive algebraic group acting on a commutative algebra, such as a ring of polynomials. Reynolds operators were introduced into fluid dynamics by Osbourne Reynolds and named by J. Kampé de Fériet.

References

  1. Peterlin, A. (April 1966). "Hydrodynamics of macromolecules in a velocity field with longitudinal gradient". Journal of Polymer Science Part B: Polymer Letters. 4 (4): 287–291. doi:10.1002/pol.1966.110040411. ISSN   0449-2986.
  2. 1 2 3 Herrchen, Markus; Öttinger, Hans Christian (1997). "A detailed comparison of various FENE dumbbell models". Journal of Non-Newtonian Fluid Mechanics. 68 (1): 17–42. doi:10.1016/S0377-0257(96)01498-X.
  3. Chilcott, M. D.; Rallison, J. M. (1988-01-01). "Creeping flow of dilute polymer solutions past cylinders and spheres". Journal of Non-Newtonian Fluid Mechanics. 29: 381–432. doi:10.1016/0377-0257(88)85062-6. ISSN   0377-0257.
  4. Warner, Harold R. (1972). "Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells". Industrial & Engineering Chemistry Fundamentals. 11 (3): 379–387. doi:10.1021/i160043a017. ISSN   0196-4313.
  5. 1 2 Kröger, Martin (2005-09-15). Models for Polymeric and Anisotropic Liquids. Springer Science & Business Media. ISBN   978-3-540-26210-7.