Persistence length

Last updated

The persistence length is a basic mechanical property quantifying the bending stiffness of a polymer. The molecule behaves like a flexible elastic rod/beam (beam theory). Informally, for pieces of the polymer that are shorter than the persistence length, the molecule behaves like a rigid rod, while for pieces of the polymer that are much longer than the persistence length, the properties can only be described statistically, like a three-dimensional random walk.

Contents

Formally, the persistence length, P, is defined as the length over which correlations in the direction of the tangent are lost. In a more chemical based manner it can also be defined as the average sum of the projections of all bonds j ≥ i on bond i in an infinitely long chain. [1]

Let us define the angle θ between a vector that is tangent to the polymer at position 0 (zero) and a tangent vector at a distance L away from position 0, along the contour of the chain. It can be shown that the expectation value of the cosine of the angle falls off exponentially with distance, [2] [3]

where P is the persistence length and the angled brackets denote the average over all starting positions.

The persistence length is considered to be one half of the Kuhn length, the length of hypothetical segments that the chain can be considered as freely joined. The persistence length equals the average projection of the end-to-end vector on the tangent to the chain contour at a chain end in the limit of infinite chain length. [4]

The persistence length can be also expressed using the bending stiffness , the Young's modulus E and knowing the section of the polymer chain. [2] [5] [6] [7]

where is the Boltzmann constant and T is the temperature.

In the case of a rigid and uniform rod, I can be expressed as:

where a is the radius.

For charged polymers the persistence length depends on the surrounding salt concentration due to electrostatic screening. The persistence length of a charged polymer is described by the OSF (Odijk, Skolnick and Fixman) model. [8]

Examples

For example, a piece of uncooked spaghetti has a persistence length on the order of m (taking in consideration a Young modulus of 5 GPa and a radius of 1 mm). [9] Double-helical DNA has a persistence length of about 390  ångströms. [10] Such large persistent length for spaghetti does not mean that it is not flexible. It just means that its stiffness is such that it needs m of length for thermal fluctuations at 300K to bend it.

Another example: [11]
Imagine a long cord that is slightly flexible. At short distance scales, the cord will basically be rigid. If you look at the direction the cord is pointing at two points that are very close together, the cord will likely be pointing in the same direction at those two points (i.e. the angles of the tangent vectors are highly correlated). If you choose two points on this flexible cord (imagine a piece of cooked spaghetti that you've just tossed on your plate) that are very far apart, however, the tangent to the cords at those locations will likely be pointing in different directions (i.e. the angles will be uncorrelated). If you plot out how correlated the tangent angles at two different points are as a function of the distance between the two points, you'll get a plot that starts out at 1 (perfect correlation) at a distance of zero and drops exponentially as distance increases. The persistence length is the characteristic length scale of that exponential decay. For the case of a single molecule of DNA the persistence length can be measured using optical tweezers and atomic force microscopy. [12] [13]

Tools for measurement of persistence length

Persistence length measurement of single stranded DNA is viable by various tools. Most of them have been done by incorporation of the worm-like chain model. For example, two ends of single stranded DNA were tagged by donor and acceptor dyes to measure average end to end distance which is represented as FRET efficiency. It was converted to persistence length by comparing the FRET efficiency with calculated FRET efficiency based on models such as the worm-like chain model. [14] [15] The recent attempts to obtain persistence length is combination of fluorescence correlation spectroscopy (FCS) with HYDRO program. HYDRO program is simply noted as the upgrade of Stokes–Einstein equation. The Stokes–Einstein equation calculates diffusion coefficient (which is inversely proportional to diffusion time) by assuming the molecules as pure sphere. However, the HYDRO program has no limitation regarding to the shape of molecule. For estimation of single stranded DNA persistence length, the diffusion time of number of worm-like chain polymer was generated and its diffusion time is calculated by the HYDRO program which is compared with the experiment diffusion time of FCS. The polymer property was adjusted to find the optimal persistence length. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Polymer physics</span>

Polymer physics is the field of physics that studies polymers, their fluctuations, mechanical properties, as well as the kinetics of reactions involving degradation and polymerisation of polymers and monomers respectively.

In polymer chemistry, a random coil is a conformation of polymers where the monomer subunits are oriented randomly while still being bonded to adjacent units. It is not one specific shape, but a statistical distribution of shapes for all the chains in a population of macromolecules. The conformation's name is derived from the idea that, in the absence of specific, stabilizing interactions, a polymer backbone will "sample" all possible conformations randomly. Many unbranched, linear homopolymers — in solution, or above their melting temperatures — assume (approximate) random coils.

<span class="mw-page-title-main">Dihedral angle</span> Angle between two planes in space

A dihedral angle is the angle between two intersecting planes or half-planes. In chemistry, it is the clockwise angle between half-planes through two sets of three atoms, having two atoms in common. In solid geometry, it is defined as the union of a line and two half-planes that have this line as a common edge. In higher dimensions, a dihedral angle represents the angle between two hyperplanes. The planes of a flying machine are said to be at positive dihedral angle when both starboard and port main planes are upwardly inclined to the lateral axis; when downwardly inclined they are said to be at a negative dihedral angle.

<span class="mw-page-title-main">Förster resonance energy transfer</span> Photochemical energy transfer mechanism

Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative dipole–dipole coupling. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance.

<span class="mw-page-title-main">Nucleic acid double helix</span> Structure formed by double-stranded molecules

In molecular biology, the term double helix refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure, and is a fundamental component in determining its tertiary structure. The structure was discovered by Rosalind Franklin and her student Raymond Gosling, but the term "double helix" entered popular culture with the publication in 1968 of The Double Helix: A Personal Account of the Discovery of the Structure of DNA by James Watson.

An ideal chain is the simplest model in polymer chemistry to describe polymers, such as nucleic acids and proteins. It assumes that the monomers in a polymer are located at the steps of a hypothetical random walker that does not remember its previous steps. By neglecting interactions among monomers, this model assumes that two monomers can occupy the same location. Although it is simple, its generality gives insight about the physics of polymers.

Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry.

The worm-like chain (WLC) model in polymer physics is used to describe the behavior of polymers that are semi-flexible: fairly stiff with successive segments pointing in roughly the same direction, and with persistence length within a few orders of magnitude of the polymer length. The WLC model is the continuous version of the Kratky–Porod model.

<span class="mw-page-title-main">Molecular motor</span> Biological molecular machines

Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work; for example, many protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work. In terms of energetic efficiency, this type of motor can be superior to currently available man-made motors. One important difference between molecular motors and macroscopic motors is that molecular motors operate in the thermal bath, an environment in which the fluctuations due to thermal noise are significant.

<span class="mw-page-title-main">Single-molecule experiment</span>

A single-molecule experiment is an experiment that investigates the properties of individual molecules. Single-molecule studies may be contrasted with measurements on an ensemble or bulk collection of molecules, where the individual behavior of molecules cannot be distinguished, and only average characteristics can be measured. Since many measurement techniques in biology, chemistry, and physics are not sensitive enough to observe single molecules, single-molecule fluorescence techniques caused a lot of excitement, since these supplied many new details on the measured processes that were not accessible in the past. Indeed, since the 1990s, many techniques for probing individual molecules have been developed.

<span class="mw-page-title-main">Kuhn length</span>

The Kuhn length is a theoretical treatment, developed by Werner Kuhn, in which a real polymer chain is considered as a collection of Kuhn segments each with a Kuhn length . Each Kuhn segment can be thought of as if they are freely jointed with each other. Each segment in a freely jointed chain can randomly orient in any direction without the influence of any forces, independent of the directions taken by other segments. Instead of considering a real chain consisting of bonds and with fixed bond angles, torsion angles, and bond lengths, Kuhn considered an equivalent ideal chain with connected segments, now called Kuhn segments, that can orient in any random direction.

High-Mobility Group or HMG is a group of chromosomal proteins that are involved in the regulation of DNA-dependent processes such as transcription, replication, recombination, and DNA repair.

Rubber elasticity refers to a property of crosslinked rubber: it can be stretched by up to a factor of 10 from its original length and, when released, returns very nearly to its original length. This can be repeated many times with no apparent degradation to the rubber. Rubber is a member of a larger class of materials called elastomers and it is difficult to overestimate their economic and technological importance. Elastomers have played a key role in the development of new technologies in the 20th century and make a substantial contribution to the global economy. Rubber elasticity is produced by several complex molecular processes and its explanation requires a knowledge of advanced mathematics, chemistry and statistical physics, particularly the concept of entropy. Entropy may be thought of as a measure of the thermal energy that is stored in a molecule. Common rubbers, such as polybutadiene and polyisoprene, are produced by a process called polymerization. Very long molecules (polymers) are built up sequentially by adding short molecular backbone units through chemical reactions. A rubber polymer follows a random, zigzag path in three dimensions, intermingling with many other rubber molecules. An elastomer is created by the addition of a few percent of a cross linking molecule such as sulfur. When heated, the crosslinking molecule causes a reaction that chemically joins (bonds) two of the rubber molecules together at some point. Because the rubber molecules are so long, each one participates in many crosslinks with many other rubber molecules forming a continuous molecular network. As a rubber band is stretched, some of the network chains are forced to become straight and this causes a decrease in their entropy. It is this decrease in entropy that gives rise to the elastic force in the network chains.

<span class="mw-page-title-main">Residual dipolar coupling</span>

The residual dipolar coupling between two spins in a molecule occurs if the molecules in solution exhibit a partial alignment leading to an incomplete averaging of spatially anisotropic dipolar couplings.

<span class="mw-page-title-main">Tethered particle motion</span>

Tethered particle motion (TPM) is a biophysical method that is used for studying various polymers such as DNA and their interaction with other entities such as proteins.

Single-molecule fluorescence resonance energy transfer is a biophysical technique used to measure distances at the 1-10 nanometer scale in single molecules, typically biomolecules. It is an application of FRET wherein a pair of donor and acceptor fluorophores are excited and detected at a single molecule level. In contrast to "ensemble FRET" which provides the FRET signal of a high number of molecules, single-molecule FRET is able to resolve the FRET signal of each individual molecule. The variation of the smFRET signal is useful to reveal kinetic information that an ensemble measurement cannot provide, especially when the system is under equilibrium with no ensemble/bulk signal change. Heterogeneity among different molecules can also be observed. This method has been applied in many measurements of intramolecular dynamics such as DNA/RNA/protein folding/unfolding and other conformational changes, and intermolecular dynamics such as reaction, binding, adsorption, and desorption that are particularly useful in chemical sensing, bioassays, and biosensing.

<span class="mw-page-title-main">DNA condensation</span>

DNA condensation refers to the process of compacting DNA molecules in vitro or in vivo. Mechanistic details of DNA packing are essential for its functioning in the process of gene regulation in living systems. Condensed DNA often has surprising properties, which one would not predict from classical concepts of dilute solutions. Therefore, DNA condensation in vitro serves as a model system for many processes of physics, biochemistry and biology. In addition, DNA condensation has many potential applications in medicine and biotechnology.

Polymer scattering experiments are one of the main scientific methods used in chemistry, physics and other sciences to study the characteristics of polymeric systems: solutions, gels, compounds and more. As in most scattering experiments, it involves subjecting a polymeric sample to incident particles, and studying the characteristics of the scattered particles: angular distribution, intensity polarization and so on. This method is quite simple and straightforward, and does not require special manipulations of the samples which may alter their properties, and hence compromise exact results.

The unified scattering function was proposed in 1995 as a universal approach to describe small-angle X-ray, and neutron scattering from disordered systems that display hierarchical structure.

References

  1. Flory, Paul J. (1969). Statistical Mechanics of Chain Molecules. New York: Interscience Publishers. ISBN   978-0-470-26495-9.
  2. 1 2 Landau, Lev Davidovič; Lifšic/Lifshitz/Lifshits, Evgenii Mikhailovich (1958–1981). Statistical Physics. Oxford [and other publisher] : Pergamon Press. p. §127.
    Landau, Lev Davidovič; Lifshitz, Evgenii Mikhailovich; Lenk, Richard (translated Russian to German) (1979). Lehrbuch der Theoretischen Physik: Statistische Physik: Teil 1 (5.Auflage) (in German). Berlin: Akadmie-Verlag. p. §127.
  3. Doi, M.; Edwards, S.F. (1986). The Theory of Polymer Dynamics. Clarendon, Oxford. p. 317.
  4. "Persistence length in polymers". Compendium of Chemical Terminology. IUPAC. 2009. doi:10.1351/goldbook.P04515. ISBN   978-0-9678550-9-7.
  5. Gittes, Frederick; Mickey, Brian; Nettleton, Jilda; Howard, Jonathon (1993). "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape". The Journal of Cell Biology. Vol. 120, no. 4. Rockefeller Univ Press. pp. 923–934.
  6. Baumann, Christoph G.; Smith, Steven B.; Bloomfield, Victor A.; Bustamante, Carlos (1997). "Ionic effects on the elasticity of single DNA molecules". Vol. 94, no. 12. Proceedings of the National Academy of Sciences. pp. 6185–6190.
  7. Mofrad, Mohammad R.K.; Kamm, Roger D. (2006). Cytoskeletal mechanics: models and measurements. Cambridge University Press. ISBN   9781139458108.
  8. Persistence Length of Polyelectrolyte Chains http://iopscience.iop.org/article/10.1209/0295-5075/24/5/003/meta
  9. Guinea, G. V. (2004). "Brittle failure of dry spaghetti". Engineering Failure Analysis. 11 (5): 705–714. doi:10.1016/j.engfailanal.2003.10.006.
  10. Gross, Peter (22 May 2011). "Quantifying how DNA stretches, melts and changes twist under tension". Nature Physics. 7 (9): 731–736. Bibcode:2011NatPh...7..731G. doi:10.1038/nphys2002.
  11. "What is persistence length?". 28 June 2011.
  12. Murugesapillai, Divakaran; McCauley, Micah J.; Huo, Ran; Nelson Holte, Molly H.; Stepanyants, Armen; Maher, L. James; Israeloff, Nathan E.; Williams, Mark C. (2014). "DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin". Nucleic Acids Research. 42 (14): 8996–9004. doi:10.1093/nar/gku635. PMC   4132745 . PMID   25063301.
  13. Murugesapillai, Divakaran; McCauley, Micah J.; Maher, L. James; Williams, Mark C. (2017). "Single-molecule studies of high-mobility group B architectural DNA bending proteins". Biophysical Reviews. 9 (1): 17–40. doi:10.1007/s12551-016-0236-4. PMC   5331113 . PMID   28303166.
  14. Huimin Chen et al, Ionic strength-dependent persistence lengths of single-stranded RNA and DNA, Proc. Natl. Acad. Sci. U. S. A. (2012) DOI: 10.1073/pnas.1119057109
  15. Jooyoun Kang et al, Ionic strength-dependent persistence lengths of single-stranded RNA and DNA, Biophysical Chemistry (2014) DOI: 10.1016/j.bpc.2014.08.004
  16. Jung, Seokhyun; Lee, Dongkeun; Kim, Sok W.; Kim, Soo Y. (2017). "Persistence Length and Cooperativity Estimation of Single Stranded DNA using FCS Combined with HYDRO Program". Journal of Fluorescence. 27 (4): 1373–1383. doi:10.1007/s10895-017-2072-8. PMID   28367589. S2CID   30564700.