The radius of gyration or gyradius of a body about the axis of rotation is defined as the radial distance to a point which would have a moment of inertia the same as the body's actual distribution of mass, if the total mass of the body were concentrated there. The radius of gyration has dimensions of distance [L] or [M0LT0] and the SI unit is the metre (m).
Mathematically the radius of gyration is the root mean square distance of the object's parts from either its center of mass or a given axis, depending on the relevant application. It is actually the perpendicular distance from point mass to the axis of rotation. One can represent a trajectory of a moving point as a body. Then radius of gyration can be used to characterize the typical distance travelled by this point.
Suppose a body consists of particles each of mass . Let be their perpendicular distances from the axis of rotation. Then, the moment of inertia of the body about the axis of rotation is
If all the masses are the same (), then the moment of inertia is .
Since ( being the total mass of the body),
From the above equations, we have
Radius of gyration is the root mean square distance of particles from axis formula
Therefore, the radius of gyration of a body about a given axis may also be defined as the root mean square distance of the various particles of the body from the axis of rotation. It is also known as a measure of the way in which the mass of a rotating rigid body is distributed about its axis of rotation.
Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,
Note: The mass elements are usually taken as the masses of the skeletal groups constituting the macromolecule, e.g., –CH2– in poly(methylene). [1]
In structural engineering, the two-dimensional radius of gyration is used to describe the distribution of cross sectional area in a column around its centroidal axis with the mass of the body. The radius of gyration is given by the following formula:
Where is the second moment of area and is the total cross-sectional area.
The gyration radius is useful in estimating the stiffness of a column. If the principal moments of the two-dimensional gyration tensor are not equal, the column will tend to buckle around the axis with the smaller principal moment. For example, a column with an elliptical cross-section will tend to buckle in the direction of the smaller semiaxis.
In engineering, where continuous bodies of matter are generally the objects of study, the radius of gyration is usually calculated as an integral.
The radius of gyration about a given axis () can be calculated in terms of the mass moment of inertia around that axis, and the total mass m;
In polymer physics, the radius of gyration is used to describe the dimensions of a polymer chain. The radius of gyration of an individual homopolymer with degree of polymerization N at a given time is defined as: [3]
where is the mean position of the monomers. As detailed below, the radius of gyration is also proportional to the root mean square distance between the monomers:
As a third method, the radius of gyration can also be computed by summing the principal moments of the gyration tensor.
Since the chain conformations of a polymer sample are quasi infinite in number and constantly change over time, the "radius of gyration" discussed in polymer physics must usually be understood as a mean over all polymer molecules of the sample and over time. That is, the radius of gyration which is measured as an average over time or ensemble:
where the angular brackets denote the ensemble average.
An entropically governed polymer chain (i.e. in so called theta conditions) follows a random walk in three dimensions. The radius of gyration for this case is given by
Note that although represents the contour length of the polymer, is strongly dependent of polymer stiffness and can vary over orders of magnitude. is reduced accordingly.
One reason that the radius of gyration is an interesting property is that it can be determined experimentally with static light scattering as well as with small angle neutron- and x-ray scattering. This allows theoretical polymer physicists to check their models against reality. The hydrodynamic radius is numerically similar, and can be measured with Dynamic Light Scattering (DLS).
To show that the two definitions of are identical, we first multiply out the summand in the first definition:
Carrying out the summation over the last two terms and using the definition of gives the formula
On the other hand, the second definition can be calculated in the same way as follows.
Thus, the two definitions are the same.
The last transformation uses the relationship
In data analysis, the radius of gyration is used to calculate many different statistics including the spread of geographical locations. These locations have recently been collected from social media users to investigate the typical mentions of a user. This can be useful for understanding how a certain group of users on social media use the platform.
Angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.
In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M. Just as a linear force is a push or a pull applied to a body, a torque can be thought of as a twist applied to an object with respect to a chosen point; for example, driving a screw uses torque, which is applied by the screwdriver rotating around its axis. A force of three newtons applied two metres from the fulcrum, for example, exerts the same torque as a force of one newton applied six metres from the fulcrum.
In statistical mechanics, the virial theorem provides a general equation that relates the average over time of the total kinetic energy of a stable system of discrete particles, bound by a conservative force with that of the total potential energy of the system. Mathematically, the theorem states where T is the total kinetic energy of the N particles, Fk represents the force on the kth particle, which is located at position rk, and angle brackets represent the average over time of the enclosed quantity. The word virial for the right-hand side of the equation derives from vis, the Latin word for "force" or "energy", and was given its technical definition by Rudolf Clausius in 1870.
The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relative to a rotational axis. It is the ratio between the torque applied and the resulting angular acceleration about that axis. It plays the same role in rotational motion as mass does in linear motion. A body's moment of inertia about a particular axis depends both on the mass and its distribution relative to the axis, increasing with mass & distance from the axis.
Polymer physics is the field of physics that studies polymers, their fluctuations, mechanical properties, as well as the kinetics of reactions involving degradation of polymers and polymerisation of monomers.
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.
In fluid dynamics, Stokes' law is an empirical law for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.
In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·).
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.
In the gravitational two-body problem, the specific orbital energy of two orbiting bodies is the constant sum of their mutual potential energy and their kinetic energy, divided by the reduced mass. According to the orbital energy conservation equation, it does not vary with time: where
A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth.
In physics, the gyromagnetic ratio of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol γ, gamma. Its SI unit is the radian per second per tesla (rad⋅s−1⋅T−1) or, equivalently, the coulomb per kilogram (C⋅kg−1).
Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.
In condensed matter physics and crystallography, the static structure factor is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns obtained in X-ray, electron and neutron diffraction experiments.
In physics, the gyration tensor is a tensor that describes the second moments of position of a collection of particles
The principle of least constraint is one variational formulation of classical mechanics enunciated by Carl Friedrich Gauss in 1829, equivalent to all other formulations of analytical mechanics. Intuitively, it says that the acceleration of a constrained physical system will be as similar as possible to that of the corresponding unconstrained system.
In the field of mathematical modeling, a radial basis function network is an artificial neural network that uses radial basis functions as activation functions. The output of the network is a linear combination of radial basis functions of the inputs and neuron parameters. Radial basis function networks have many uses, including function approximation, time series prediction, classification, and system control. They were first formulated in a 1988 paper by Broomhead and Lowe, both researchers at the Royal Signals and Radar Establishment.
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his presentation to the Turin Academy of Science in 1760 culminating in his 1788 grand opus, Mécanique analytique.
Chapman–Enskog theory provides a framework in which equations of hydrodynamics for a gas can be derived from the Boltzmann equation. The technique justifies the otherwise phenomenological constitutive relations appearing in hydrodynamical descriptions such as the Navier–Stokes equations. In doing so, expressions for various transport coefficients such as thermal conductivity and viscosity are obtained in terms of molecular parameters. Thus, Chapman–Enskog theory constitutes an important step in the passage from a microscopic, particle-based description to a continuum hydrodynamical one.