This article needs attention from an expert in geometry. The specific problem is: Other users have requested expert review on talk page.(August 2023) |
The second moment of area, or second area moment, or quadratic moment of area and also known as the area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The second moment of area is typically denoted with either an (for an axis that lies in the plane of the area) or with a (for an axis perpendicular to the plane). In both cases, it is calculated with a multiple integral over the object in question. Its dimension is L (length) to the fourth power. Its unit of dimension, when working with the International System of Units, is meters to the fourth power, m 4, or inches to the fourth power, in 4, when working in the Imperial System of Units or the US customary system.
In structural engineering, the second moment of area of a beam is an important property used in the calculation of the beam's deflection and the calculation of stress caused by a moment applied to the beam. In order to maximize the second moment of area, a large fraction of the cross-sectional area of an I-beam is located at the maximum possible distance from the centroid of the I-beam's cross-section. The planar second moment of area provides insight into a beam's resistance to bending due to an applied moment, force, or distributed load perpendicular to its neutral axis, as a function of its shape. The polar second moment of area provides insight into a beam's resistance to torsional deflection, due to an applied moment parallel to its cross-section, as a function of its shape.
Different disciplines use the term moment of inertia (MOI) to refer to different moments. It may refer to either of the planar second moments of area (often or with respect to some reference plane), or the polar second moment of area (, where r is the distance to some reference axis). In each case the integral is over all the infinitesimal elements of area, dA, in some two-dimensional cross-section. In physics, moment of inertia is strictly the second moment of mass with respect to distance from an axis: , where r is the distance to some potential rotation axis, and the integral is over all the infinitesimal elements of mass, dm, in a three-dimensional space occupied by an object Q. The MOI, in this sense, is the analog of mass for rotational problems. In engineering (especially mechanical and civil), moment of inertia commonly refers to the second moment of the area. [1]
The second moment of area for an arbitrary shape R with respect to an arbitrary axis ( axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment ) is defined as where
For example, when the desired reference axis is the x-axis, the second moment of area (often denoted as ) can be computed in Cartesian coordinates as
The second moment of the area is crucial in Euler–Bernoulli theory of slender beams.
More generally, the product moment of area is defined as [3]
It is sometimes necessary to calculate the second moment of area of a shape with respect to an axis different to the centroidal axis of the shape. However, it is often easier to derive the second moment of area with respect to its centroidal axis, , and use the parallel axis theorem to derive the second moment of area with respect to the axis. The parallel axis theorem states where
A similar statement can be made about a axis and the parallel centroidal axis. Or, in general, any centroidal axis and a parallel axis.
For the simplicity of calculation, it is often desired to define the polar moment of area (with respect to a perpendicular axis) in terms of two area moments of inertia (both with respect to in-plane axes). The simplest case relates to and .
This relationship relies on the Pythagorean theorem which relates and to and on the linearity of integration.
For more complex areas, it is often easier to divide the area into a series of "simpler" shapes. The second moment of area for the entire shape is the sum of the second moment of areas of all of its parts about a common axis. This can include shapes that are "missing" (i.e. holes, hollow shapes, etc.), in which case the second moment of area of the "missing" areas are subtracted, rather than added. In other words, the second moment of area of "missing" parts are considered negative for the method of composite shapes.
See list of second moments of area for other shapes.
Consider a rectangle with base and height whose centroid is located at the origin. represents the second moment of area with respect to the x-axis; represents the second moment of area with respect to the y-axis; represents the polar moment of inertia with respect to the z-axis.
Using the perpendicular axis theorem we get the value of .
Consider an annulus whose center is at the origin, outside radius is , and inside radius is . Because of the symmetry of the annulus, the centroid also lies at the origin. We can determine the polar moment of inertia, , about the axis by the method of composite shapes. This polar moment of inertia is equivalent to the polar moment of inertia of a circle with radius minus the polar moment of inertia of a circle with radius , both centered at the origin. First, let us derive the polar moment of inertia of a circle with radius with respect to the origin. In this case, it is easier to directly calculate as we already have , which has both an and component. Instead of obtaining the second moment of area from Cartesian coordinates as done in the previous section, we shall calculate and directly using polar coordinates.
Now, the polar moment of inertia about the axis for an annulus is simply, as stated above, the difference of the second moments of area of a circle with radius and a circle with radius .
Alternatively, we could change the limits on the integral the first time around to reflect the fact that there is a hole. This would be done like this.
The second moment of area about the origin for any simple polygon on the XY-plane can be computed in general by summing contributions from each segment of the polygon after dividing the area into a set of triangles. This formula is related to the shoelace formula and can be considered a special case of Green's theorem.
A polygon is assumed to have vertices, numbered in counter-clockwise fashion. If polygon vertices are numbered clockwise, returned values will be negative, but absolute values will be correct.
where are the coordinates of the -th polygon vertex, for . Also, are assumed to be equal to the coordinates of the first vertex, i.e., and . [6] [7] [8] [9]
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line, which may not intersect the generatrix. The surface created by this revolution and which bounds the solid is the surface of revolution.
A surface of revolution is a surface in Euclidean space created by rotating a curve one full revolution around an axis of rotation . The volume bounded by the surface created by this revolution is the solid of revolution.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, the Clausen function, introduced by Thomas Clausen, is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.
In mathematics, Pappus's centroid theorem is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of revolution.
The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is
This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.
A planimeter, also known as a platometer, is a measuring instrument used to determine the area of an arbitrary two-dimensional shape.
In geometry, the area enclosed by a circle of radius r is πr2. Here, the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.
In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.
In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z).
The second polar moment of area, also known as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (deflection), in objects with an invariant cross-section and no significant warping or out-of-plane deformation. It is a constituent of the second moment of area, linked through the perpendicular axis theorem. Where the planar second moment of area describes an object's resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object's resistance to deflection when subjected to a moment applied in a plane perpendicular to the object's central axis. Similar to planar second moment of area calculations, the polar second moment of area is often denoted as . While several engineering textbooks and academic publications also denote it as or , this designation should be given careful attention so that it does not become confused with the torsion constant, , used for non-cylindrical objects.
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness. The SI unit for torsion constant is m4.
Rotational diffusion is the rotational movement which acts upon any object such as particles, molecules, atoms when present in a fluid, by random changes in their orientations. Although the directions and intensities of these changes are statistically random, they do not arise randomly and are instead the result of interactions between particles. One example occurs in colloids, where relatively large insoluble particles are suspended in a greater amount of fluid. The changes in orientation occur from collisions between the particle and the many molecules forming the fluid surrounding the particle, which each transfer kinetic energy to the particle, and as such can be considered random due to the varied speeds and amounts of fluid molecules incident on each individual particle at any given time.
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.
In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.
In planetary sciences, the moment of inertia factor or normalized polar moment of inertia is a dimensionless quantity that characterizes the radial distribution of mass inside a planet or satellite. Since a moment of inertia has dimensions of mass times length squared, the moment of inertia factor is the coefficient that multiplies these.
The term second moment is more proper than the term moment of inertia, since, logically, the latter should be used only to denote integrals of mass (see Sec. 9.11). In engineering practice, however, moment of inertia is used in connection with areas as well as masses.