Second moment of area

Last updated

The second moment of area, or second area moment, or quadratic moment of area and also known as the area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with regard to an arbitrary axis. The second moment of area is typically denoted with either an (for an axis that lies in the plane of the area) or with a (for an axis perpendicular to the plane). In both cases, it is calculated with a multiple integral over the object in question. Its dimension is L (length) to the fourth power. Its unit of dimension, when working with the International System of Units, is meters to the fourth power, m 4, or inches to the fourth power, in 4, when working in the Imperial System of Units or the US customary system.

Contents

In structural engineering, the second moment of area of a beam is an important property used in the calculation of the beam's deflection and the calculation of stress caused by a moment applied to the beam. In order to maximize the second moment of area, a large fraction of the cross-sectional area of an I-beam is located at the maximum possible distance from the centroid of the I-beam's cross-section. The planar second moment of area provides insight into a beam's resistance to bending due to an applied moment, force, or distributed load perpendicular to its neutral axis, as a function of its shape. The polar second moment of area provides insight into a beam's resistance to torsional deflection, due to an applied moment parallel to its cross-section, as a function of its shape.

Different disciplines use the term moment of inertia (MOI) to refer to different moments. It may refer to either of the planar second moments of area (often or with respect to some reference plane), or the polar second moment of area (, where r is the distance to some reference axis). In each case the integral is over all the infinitesimal elements of area, dA, in some two-dimensional cross-section. In physics, moment of inertia is strictly the second moment of mass with respect to distance from an axis: , where r is the distance to some potential rotation axis, and the integral is over all the infinitesimal elements of mass, dm, in a three-dimensional space occupied by an object Q. The MOI, in this sense, is the analog of mass for rotational problems. In engineering (especially mechanical and civil), moment of inertia commonly refers to the second moment of the area. [1]

Definition

An arbitrary shape. r is the distance to the element dA, with projections x and y on the x and y axes. Moment of area of an arbitrary shape.svg
An arbitrary shape. ρ is the distance to the element dA, with projections x and y on the x and y axes.

The second moment of area for an arbitrary shape R with respect to an arbitrary axis ( axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment ) is defined as

where

For example, when the desired reference axis is the x-axis, the second moment of area (often denoted as ) can be computed in Cartesian coordinates as

The second moment of the area is crucial in Euler–Bernoulli theory of slender beams.

Product moment of area

More generally, the product moment of area is defined as [3]

Parallel axis theorem

A shape with centroidal axis x. The parallel axis theorem can be used to obtain the second moment of area with respect to the x' axis. Parallel axis theorem.svg
A shape with centroidal axis x. The parallel axis theorem can be used to obtain the second moment of area with respect to the x' axis.

It is sometimes necessary to calculate the second moment of area of a shape with respect to an axis different to the centroidal axis of the shape. However, it is often easier to derive the second moment of area with respect to its centroidal axis, , and use the parallel axis theorem to derive the second moment of area with respect to the axis. The parallel axis theorem states

where

A similar statement can be made about a axis and the parallel centroidal axis. Or, in general, any centroidal axis and a parallel axis.

Perpendicular axis theorem

For the simplicity of calculation, it is often desired to define the polar moment of area (with respect to a perpendicular axis) in terms of two area moments of inertia (both with respect to in-plane axes). The simplest case relates to and .

This relationship relies on the Pythagorean theorem which relates and to and on the linearity of integration.

Composite shapes

For more complex areas, it is often easier to divide the area into a series of "simpler" shapes. The second moment of area for the entire shape is the sum of the second moment of areas of all of its parts about a common axis. This can include shapes that are "missing" (i.e. holes, hollow shapes, etc.), in which case the second moment of area of the "missing" areas are subtracted, rather than added. In other words, the second moment of area of "missing" parts are considered negative for the method of composite shapes.

Examples

See list of second moments of area for other shapes.

Rectangle with centroid at the origin

Rectangle with base b and height h Moment of area of a rectangle through the centroid.svg
Rectangle with base b and height h

Consider a rectangle with base and height whose centroid is located at the origin. represents the second moment of area with respect to the x-axis; represents the second moment of area with respect to the y-axis; represents the polar moment of inertia with respect to the z-axis.

Using the perpendicular axis theorem we get the value of .

Annulus centered at origin

Annulus with inner radius r1 and outer radius r2 Moment of area of an annulus.svg
Annulus with inner radius r1 and outer radius r2

Consider an annulus whose center is at the origin, outside radius is , and inside radius is . Because of the symmetry of the annulus, the centroid also lies at the origin. We can determine the polar moment of inertia, , about the axis by the method of composite shapes. This polar moment of inertia is equivalent to the polar moment of inertia of a circle with radius minus the polar moment of inertia of a circle with radius , both centered at the origin. First, let us derive the polar moment of inertia of a circle with radius with respect to the origin. In this case, it is easier to directly calculate as we already have , which has both an and component. Instead of obtaining the second moment of area from Cartesian coordinates as done in the previous section, we shall calculate and directly using polar coordinates.

Now, the polar moment of inertia about the axis for an annulus is simply, as stated above, the difference of the second moments of area of a circle with radius and a circle with radius .

Alternatively, we could change the limits on the integral the first time around to reflect the fact that there is a hole. This would be done like this.

Any polygon

A simple polygon. Here,
n
=
6
{\displaystyle n=6}
, notice point "7" is identical to point 1. Moment of area of a polygon.svg
A simple polygon. Here, , notice point "7" is identical to point 1.

The second moment of area about the origin for any simple polygon on the XY-plane can be computed in general by summing contributions from each segment of the polygon after dividing the area into a set of triangles. This formula is related to the shoelace formula and can be considered a special case of Green's theorem.

A polygon is assumed to have vertices, numbered in counter-clockwise fashion. If polygon vertices are numbered clockwise, returned values will be negative, but absolute values will be correct.

where are the coordinates of the -th polygon vertex, for . Also, are assumed to be equal to the coordinates of the first vertex, i.e., and . [6] [7] [8] [9]

See also

Related Research Articles

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Ellipsoid</span> Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

<span class="mw-page-title-main">Solid of revolution</span> Type of three-dimensional shape

In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line, which may not intersect the generatrix. The surface created by this revolution and which bounds the solid is the surface of revolution.

<span class="mw-page-title-main">Surface of revolution</span> Surface created by rotating a curve about an axis

A surface of revolution is a surface in Euclidean space created by rotating a curve one full revolution around an axis of rotation . The volume bounded by the surface created by this revolution is the solid of revolution.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Clausen function</span> Transcendental single-variable function

In mathematics, the Clausen function, introduced by Thomas Clausen, is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

<span class="mw-page-title-main">Pappus's centroid theorem</span> Results on the surface areas and volumes of surfaces and solids of revolution

In mathematics, Pappus's centroid theorem is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of revolution.

<span class="mw-page-title-main">Gaussian integral</span> Integral of the Gaussian function, equal to sqrt(π)

The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

<span class="mw-page-title-main">Cone</span> Geometric shape

A cone is a three-dimensional geometric shape that tapers smoothly from a flat base to a point called the apex or vertex.

A planimeter, also known as a platometer, is a measuring instrument used to determine the area of an arbitrary two-dimensional shape.

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

<span class="mw-page-title-main">Viviani's curve</span> Figure-eight shaped curve on a sphere

In mathematics, Viviani's curve, also known as Viviani's window, is a figure eight shaped space curve named after the Italian mathematician Vincenzo Viviani. It is the intersection of a sphere with a cylinder that is tangent to the sphere and passes through two poles of the sphere. Before Viviani this curve was studied by Simon de La Loubère and Gilles de Roberval.

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Physical (natural philosophy) interpretation: S any surface, V any volume, etc.. Incl. variable to time, position, etc.

The second polar moment of area, also known as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (deflection), in objects with an invariant cross-section and no significant warping or out-of-plane deformation. It is a constituent of the second moment of area, linked through the perpendicular axis theorem. Where the planar second moment of area describes an object's resistance to deflection (bending) when subjected to a force applied to a plane parallel to the central axis, the polar second moment of area describes an object's resistance to deflection when subjected to a moment applied in a plane perpendicular to the object's central axis. Similar to planar second moment of area calculations, the polar second moment of area is often denoted as . While several engineering textbooks and academic publications also denote it as or , this designation should be given careful attention so that it does not become confused with the torsion constant, , used for non-cylindrical objects.

In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.

In planetary sciences, the moment of inertia factor or normalized polar moment of inertia is a dimensionless quantity that characterizes the radial distribution of mass inside a planet or satellite. Since a moment of inertia has dimensions of mass times length squared, the moment of inertia factor is the coefficient that multiplies these.

References

  1. Beer, Ferdinand P. (2013). Vector Mechanics for Engineers (10th ed.). New York: McGraw-Hill. p. 471. ISBN   978-0-07-339813-6. The term second moment is more proper than the term moment of inertia, since, logically, the latter should be used only to denote integrals of mass (see Sec. 9.11). In engineering practice, however, moment of inertia is used in connection with areas as well as masses.
  2. Pilkey, Walter D. (2002). Analysis and Design of Elastic Beams . John Wiley & Sons, Inc. p.  15. ISBN   978-0-471-38152-5.
  3. Beer, Ferdinand P. (2013). "Chapter 9.8: Product of inertia". Vector Mechanics for Engineers (10th ed.). New York: McGraw-Hill. p. 495. ISBN   978-0-07-339813-6.
  4. Hibbeler, R. C. (2004). Statics and Mechanics of Materials (Second ed.). Pearson Prentice Hall. ISBN   0-13-028127-1.
  5. Beer, Ferdinand P. (2013). "Chapter 9.6: Parallel-axis theorem". Vector Mechanics for Engineers (10th ed.). New York: McGraw-Hill. p. 481. ISBN   978-0-07-339813-6.
  6. Hally, David (1987). Calculation of the Moments of Polygons (PDF) (Technical report). Canadian National Defense. Technical Memorandum 87/209. Archived (PDF) from the original on March 23, 2020.
  7. Obregon, Joaquin (2012). Mechanical Simmetry. AuthorHouse. ISBN   978-1-4772-3372-6.
  8. Steger, Carsten (1996). "On the Calculation of Arbitrary Moments of Polygons" (PDF). S2CID   17506973. Archived from the original (PDF) on 2018-10-03.
  9. Soerjadi, Ir. R. "On the Computation of the Moments of a Polygon, with some Applications".