Part of a series on |
Classical mechanics |
---|
A moment is a mathematical expression involving the product of a distance and a physical quantity such as a force or electric charge. Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. For example, the moment of force, often called torque, is the product of a force on an object and the distance from the reference point to the object. In principle, any physical quantity can be multiplied by a distance to produce a moment. Commonly used quantities include forces, masses, and electric charge distributions; a list of examples is provided later.
In its most basic form, a moment is the product of the distance to a point, raised to a power, and a physical quantity (such as force or electrical charge) at that point:
where is the physical quantity such as a force applied at a point, or a point charge, or a point mass, etc. If the quantity is not concentrated solely at a single point, the moment is the integral of that quantity's density over space:
where is the distribution of the density of charge, mass, or whatever quantity is being considered.
More complex forms take into account the angular relationships between the distance and the physical quantity, but the above equations capture the essential feature of a moment, namely the existence of an underlying or equivalent term. This implies that there are multiple moments (one for each value of n) and that the moment generally depends on the reference point from which the distance is measured, although for certain moments (technically, the lowest non-zero moment) this dependence vanishes and the moment becomes independent of the reference point.
Each value of n corresponds to a different moment: the 1st moment corresponds to n = 1; the 2nd moment to n = 2, etc. The 0th moment (n = 0) is sometimes called the monopole moment; the 1st moment (n = 1) is sometimes called the dipole moment, and the 2nd moment (n = 2) is sometimes called the quadrupole moment , especially in the context of electric charge distributions.
Moments of mass:
Assuming a density function that is finite and localized to a particular region, outside that region a 1/r potential may be expressed as a series of spherical harmonics:
The coefficients are known as multipole moments, and take the form:
where expressed in spherical coordinates is a variable of integration. A more complete treatment may be found in pages describing multipole expansion or spherical multipole moments. (The convention in the above equations was taken from Jackson [1] – the conventions used in the referenced pages may be slightly different.)
When represents an electric charge density, the are, in a sense, projections of the moments of electric charge: is the monopole moment; the are projections of the dipole moment, the are projections of the quadrupole moment, etc.
The multipole expansion applies to 1/r scalar potentials, examples of which include the electric potential and the gravitational potential. For these potentials, the expression can be used to approximate the strength of a field produced by a localized distribution of charges (or mass) by calculating the first few moments. For sufficiently large r, a reasonable approximation can be obtained from just the monopole and dipole moments. Higher fidelity can be achieved by calculating higher order moments. Extensions of the technique can be used to calculate interaction energies and intermolecular forces.
The technique can also be used to determine the properties of an unknown distribution . Measurements pertaining to multipole moments may be taken and used to infer properties of the underlying distribution. This technique applies to small objects such as molecules, [2] [3] but has also been applied to the universe itself, [4] being for example the technique employed by the WMAP and Planck experiments to analyze the cosmic microwave background radiation.
In works believed to stem from Ancient Greece, the concept of a moment is alluded to by the word ῥοπή (rhopḗ, lit. "inclination") and composites like ἰσόρροπα (isorropa, lit. "of equal inclinations"). [5] [6] [7] The context of these works is mechanics and geometry involving the lever. [8] In particular, in extant works attributed to Archimedes, the moment is pointed out in phrasings like:
Moreover, in extant texts such as The Method of Mechanical Theorems , moments are used to infer the center of gravity, area, and volume of geometric figures.
In 1269, William of Moerbeke translates various works of Archimedes and Eutocious into Latin. The term ῥοπή is transliterated into ropen. [6]
Around 1450, Jacobus Cremonensis translates ῥοπή in similar texts into the Latin term momentum (lit. "movement" [10] ). [11] [6] : 331 The same term is kept in a 1501 translation by Giorgio Valla, and subsequently by Francesco Maurolico, Federico Commandino, Guidobaldo del Monte, Adriaan van Roomen, Florence Rivault, Francesco Buonamici, Marin Mersenne [5] , and Galileo Galilei. That said, why was the word momentum chosen for the translation? One clue, according to Treccani, is that momento in Medieval Italy, the place the early translators lived, in a transferred sense meant both a "moment of time" and a "moment of weight" (a small amount of weight that turns the scale). [lower-alpha 2]
In 1554, Francesco Maurolico clarifies the Latin term momentum in the work Prologi sive sermones. Here is a Latin to English translation as given by Marshall Clagett: [6]
"[...] equal weights at unequal distances do not weigh equally, but unequal weights [at these unequal distances may] weigh equally. For a weight suspended at a greater distance is heavier, as is obvious in a balance. Therefore, there exists a certain third kind of power or third difference of magnitude—one that differs from both body and weight—and this they call moment. [lower-alpha 3] Therefore, a body acquires weight from both quantity [i.e., size] and quality [i.e., material], but a weight receives its moment from the distance at which it is suspended. Therefore, when distances are reciprocally proportional to weights, the moments [of the weights] are equal, as Archimedes demonstrated in The Book on Equal Moments . [lower-alpha 4] Therefore, weights or [rather] moments like other continuous quantities, are joined at some common terminus, that is, at something common to both of them like the center of weight, or at a point of equilibrium. Now the center of gravity in any weight is that point which, no matter how often or whenever the body is suspended, always inclines perpendicularly toward the universal center.
In addition to body, weight, and moment, there is a certain fourth power, which can be called impetus or force. [lower-alpha 5] Aristotle investigates it in On Mechanical Questions, and it is completely different from [the] three aforesaid [powers or magnitudes]. [...]"
in 1586, Simon Stevin uses the Dutch term staltwicht ("parked weight") for momentum in De Beghinselen Der Weeghconst .
In 1632, Galileo Galilei publishes Dialogue Concerning the Two Chief World Systems and uses the Italian momento with many meanings, including the one of his predecessors. [12]
In 1643, Thomas Salusbury translates some of Galilei's works into English. Salusbury translates Latin momentum and Italian momento into the English term moment. [lower-alpha 6]
In 1765, the Latin term momentum inertiae (English: moment of inertia ) is used by Leonhard Euler to refer to one of Christiaan Huygens's quantities in Horologium Oscillatorium . [13] Huygens 1673 work involving finding the center of oscillation had been stimulated by Marin Mersenne, who suggested it to him in 1646. [14] [15]
In 1811, the French term moment d'une force (English: moment of force) with respect to a point and plane is used by Siméon Denis Poisson in Traité de mécanique. [16] An English translation appears in 1842.
In 1884, the term torque is suggested by James Thomson in the context of measuring rotational forces of machines (with propellers and rotors). [17] [18] Today, a dynamometer is used to measure the torque of machines.
In 1893, Karl Pearson uses the term n-th moment and in the context of curve-fitting scientific measurements. [19] Pearson wrote in response to John Venn, who, some years earlier, observed a peculiar pattern involving meteorological data and asked for an explanation of its cause. [20] In Pearson's response, this analogy is used: the mechanical "center of gravity" is the mean and the "distance" is the deviation from the mean. This later evolved into moments in mathematics. The analogy between the mechanical concept of a moment and the statistical function involving the sum of the nth powers of deviations was noticed by several earlier, including Laplace, Kramp, Gauss, Encke, Czuber, Quetelet, and De Forest. [21]
Angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.
In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:
The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis, akin to how mass determines the force needed for a desired acceleration. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rate of rotation by a given amount.
In physics, the center of mass of a distribution of mass in space is the unique point at any given time where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion. In other words, the center of mass is the particle equivalent of a given object for application of Newton's laws of motion.
In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.
In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.
Quadrupole magnets, abbreviated as Q-magnets, consist of groups of four magnets laid out so that in the planar multipole expansion of the field, the dipole terms cancel and where the lowest significant terms in the field equations are quadrupole. Quadrupole magnets are useful as they create a magnetic field whose magnitude grows rapidly with the radial distance from its longitudinal axis. This is used in particle beam focusing.
The Stark effect is the shifting and splitting of spectral lines of atoms and molecules due to the presence of an external electric field. It is the electric-field analogue of the Zeeman effect, where a spectral line is split into several components due to the presence of the magnetic field. Although initially coined for the static case, it is also used in the wider context to describe the effect of time-dependent electric fields. In particular, the Stark effect is responsible for the pressure broadening of spectral lines by charged particles in plasmas. For most spectral lines, the Stark effect is either linear or quadratic with a high accuracy.
In classical electromagnetism, polarization density is the vector field that expresses the volumetric density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized.
A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system for three-dimensional Euclidean space, . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on , or less often on for some other .
A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure reflecting various orders of complexity.
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m−3), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m−2), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m−1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.
In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.
The method of image charges is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem.
Axial multipole moments are a series expansion of the electric potential of a charge distribution localized close to the origin along one Cartesian axis, denoted here as the z-axis. However, the axial multipole expansion can also be applied to any potential or field that varies inversely with the distance to the source, i.e., as . For clarity, we first illustrate the expansion for a single point charge, then generalize to an arbitrary charge density localized to the z-axis.
In physics, spherical multipole moments are the coefficients in a series expansion of a potential that varies inversely with the distance R to a source, i.e., as Examples of such potentials are the electric potential, the magnetic potential and the gravitational potential.
Ewald summation, named after Paul Peter Ewald, is a method for computing long-range interactions in periodic systems. It was first developed as the method for calculating the electrostatic energies of ionic crystals, and is now commonly used for calculating long-range interactions in computational chemistry. Ewald summation is a special case of the Poisson summation formula, replacing the summation of interaction energies in real space with an equivalent summation in Fourier space. In this method, the long-range interaction is divided into two parts: a short-range contribution, and a long-range contribution which does not have a singularity. The short-range contribution is calculated in real space, whereas the long-range contribution is calculated using a Fourier transform. The advantage of this method is the rapid convergence of the energy compared with that of a direct summation. This means that the method has high accuracy and reasonable speed when computing long-range interactions, and it is thus the de facto standard method for calculating long-range interactions in periodic systems. The method requires charge neutrality of the molecular system to accurately calculate the total Coulombic interaction. A study of the truncation errors introduced in the energy and force calculations of disordered point-charge systems is provided by Kolafa and Perram.
In classical mechanics, Euler's laws of motion are equations of motion which extend Newton's laws of motion for point particle to rigid body motion. They were formulated by Leonhard Euler about 50 years after Isaac Newton formulated his laws.
The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system: that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.
Multipole radiation is a theoretical framework for the description of electromagnetic or gravitational radiation from time-dependent distributions of distant sources. These tools are applied to physical phenomena which occur at a variety of length scales - from gravitational waves due to galaxy collisions to gamma radiation resulting from nuclear decay. Multipole radiation is analyzed using similar multipole expansion techniques that describe fields from static sources, however there are important differences in the details of the analysis because multipole radiation fields behave quite differently from static fields. This article is primarily concerned with electromagnetic multipole radiation, although the treatment of gravitational waves is similar.