Rotating reference frame

Last updated

A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only frames rotating about a fixed axis. For more general rotations, see Euler angles.)

Contents

In the inertial frame of reference (upper part of the picture), the black ball moves in a straight line. However, the observer (red dot) who is standing in the rotating/non-inertial frame of reference (lower part of the picture) sees the object as following a curved path due to the Coriolis and centrifugal forces present in this frame. Corioliskraftanimation.gif
In the inertial frame of reference (upper part of the picture), the black ball moves in a straight line. However, the observer (red dot) who is standing in the rotating/non-inertial frame of reference (lower part of the picture) sees the object as following a curved path due to the Coriolis and centrifugal forces present in this frame.

Fictitious forces

All non-inertial reference frames exhibit fictitious forces; rotating reference frames are characterized by three: [1]

and, for non-uniformly rotating reference frames,

Scientists in a rotating box can measure the rotation speed and axis of rotation by measuring these fictitious forces. For example, Léon Foucault was able to show the Coriolis force that results from Earth's rotation using the Foucault pendulum. If Earth were to rotate many times faster, these fictitious forces could be felt by humans, as they are when on a spinning carousel.

Centrifugal force

In classical mechanics, centrifugal force is an outward force associated with rotation. Centrifugal force is one of several so-called pseudo-forces (also known as inertial forces), so named because, unlike real forces, they do not originate in interactions with other bodies situated in the environment of the particle upon which they act. Instead, centrifugal force originates in the rotation of the frame of reference within which observations are made. [2] [3] [4] [5] [6] [7]

Coriolis force

The mathematical expression for the Coriolis force appeared in an 1835 paper by a French scientist Gaspard-Gustave Coriolis in connection with hydrodynamics, and also in the tidal equations of Pierre-Simon Laplace in 1778. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

Perhaps the most commonly encountered rotating reference frame is the Earth. Moving objects on the surface of the Earth experience a Coriolis force, and appear to veer to the right in the northern hemisphere, and to the left in the southern. Movements of air in the atmosphere and water in the ocean are notable examples of this behavior: rather than flowing directly from areas of high pressure to low pressure, as they would on a non-rotating planet, winds and currents tend to flow to the right of this direction north of the equator, and to the left of this direction south of the equator. This effect is responsible for the rotation of large cyclones(see Coriolis effects in meteorology).

Euler force

In classical mechanics, the Euler acceleration (named for Leonhard Euler), also known as azimuthal acceleration [8] or transverse acceleration [9] is an acceleration that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axis. This article is restricted to a frame of reference that rotates about a fixed axis.

The Euler force is a fictitious force on a body that is related to the Euler acceleration by F = ma, where a is the Euler acceleration and m is the mass of the body. [10] [11]

Relating rotating frames to stationary frames

The following is a derivation of the formulas for accelerations as well as fictitious forces in a rotating frame. It begins with the relation between a particle's coordinates in a rotating frame and its coordinates in an inertial (stationary) frame. Then, by taking time derivatives, formulas are derived that relate the velocity of the particle as seen in the two frames, and the acceleration relative to each frame. Using these accelerations, the fictitious forces are identified by comparing Newton's second law as formulated in the two different frames.

Relation between positions in the two frames

To derive these fictitious forces, it's helpful to be able to convert between the coordinates of the rotating reference frame and the coordinates of an inertial reference frame with the same origin. [note 1] If the rotation is about the axis with a constant angular velocity (so and which implies for some constant where denotes the angle in the -plane formed at time by and the -axis), and if the two reference frames coincide at time (meaning when so take or some other integer multiple of ), the transformation from rotating coordinates to inertial coordinates can be written whereas the reverse transformation is

This result can be obtained from a rotation matrix.

Introduce the unit vectors representing standard unit basis vectors in the rotating frame. The time-derivatives of these unit vectors are found next. Suppose the frames are aligned at and the -axis is the axis of rotation. Then for a counterclockwise rotation through angle : where the components are expressed in the stationary frame. Likewise,

Thus the time derivative of these vectors, which rotate without changing magnitude, is where This result is the same as found using a vector cross product with the rotation vector pointed along the z-axis of rotation namely, where is either or

Time derivatives in the two frames

Introduce unit vectors , now representing standard unit basis vectors in the general rotating frame. As they rotate they will remain normalized and perpendicular to each other. If they rotate at the speed of about an axis along the rotation vector then each unit vector of the rotating coordinate system (such as or ) abides by the following equation: So if denotes the transformation taking basis vectors of the inertial- to the rotating frame, with matrix columns equal to the basis vectors of the rotating frame, then the cross product multiplication by the rotation vector is given by .

If is a vector function that is written as [note 2] and we want to examine its first derivative then (using the product rule of differentiation): [12] [13] where denotes the rate of change of as observed in the rotating coordinate system. As a shorthand the differentiation is expressed as:

This result is also known as the transport theorem in analytical dynamics and is also sometimes referred to as the basic kinematic equation. [14]

Relation between velocities in the two frames

A velocity of an object is the time-derivative of the object's position, so

The time derivative of a position in a rotating reference frame has two components, one from the explicit time dependence due to motion of the object itself in the rotating reference frame, and another from the frame's own rotation. Applying the result of the previous subsection to the displacement the velocities in the two reference frames are related by the equation

where subscript means the inertial frame of reference, and means the rotating frame of reference.

Relation between accelerations in the two frames

Acceleration is the second time derivative of position, or the first time derivative of velocity

where subscript means the inertial frame of reference, the rotating frame of reference, and where the expression, again, in the bracketed expression on the left is to be interpreted as an operator working onto the bracketed expression on the right.

As , the first time derivatives of inside either frame, when expressed with respect to the basis of e.g. the inertial frame, coincide. Carrying out the differentiations and re-arranging some terms yields the acceleration relative to the rotating reference frame,

where is the apparent acceleration in the rotating reference frame, the term represents centrifugal acceleration, and the term is the Coriolis acceleration. The last term, , is the Euler acceleration and is zero in uniformly rotating frames.

Newton's second law in the two frames

When the expression for acceleration is multiplied by the mass of the particle, the three extra terms on the right-hand side result in fictitious forces in the rotating reference frame, that is, apparent forces that result from being in a non-inertial reference frame, rather than from any physical interaction between bodies.

Using Newton's second law of motion we obtain: [1] [12] [13] [15] [16]

where is the mass of the object being acted upon by these fictitious forces. Notice that all three forces vanish when the frame is not rotating, that is, when

For completeness, the inertial acceleration due to impressed external forces can be determined from the total physical force in the inertial (non-rotating) frame (for example, force from physical interactions such as electromagnetic forces) using Newton's second law in the inertial frame: Newton's law in the rotating frame then becomes

In other words, to handle the laws of motion in a rotating reference frame: [16] [17] [18]

Treat the fictitious forces like real forces, and pretend you are in an inertial frame.

Louis N. Hand, Janet D. Finch Analytical Mechanics, p. 267

Obviously, a rotating frame of reference is a case of a non-inertial frame. Thus the particle in addition to the real force is acted upon by a fictitious force...The particle will move according to Newton's second law of motion if the total force acting on it is taken as the sum of the real and fictitious forces.

HS Hans & SP Pui: Mechanics; p. 341

This equation has exactly the form of Newton's second law, except that in addition to F, the sum of all forces identified in the inertial frame, there is an extra term on the right...This means we can continue to use Newton's second law in the noninertial frame provided we agree that in the noninertial frame we must add an extra force-like term, often called the inertial force.

John R. Taylor: Classical Mechanics; p. 328

Use in magnetic resonance

It is convenient to consider magnetic resonance in a frame that rotates at the Larmor frequency of the spins. This is illustrated in the animation below. The rotating wave approximation may also be used.

Animation showing the rotating frame. The red arrow is a spin in the Bloch sphere which precesses in the laboratory frame due to a static magnetic field. In the rotating frame the spin remains still until a resonantly oscillating magnetic field drives magnetic resonance. Animated Rotating Frame.gif
Animation showing the rotating frame. The red arrow is a spin in the Bloch sphere which precesses in the laboratory frame due to a static magnetic field. In the rotating frame the spin remains still until a resonantly oscillating magnetic field drives magnetic resonance.

See also

Related Research Articles

<span class="mw-page-title-main">Centripetal force</span> Force directed to the center of rotation

A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.

<span class="mw-page-title-main">Coriolis force</span> Apparent force in a rotating reference frame

In physics, the Coriolis force is an inertial force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

<span class="mw-page-title-main">Polar coordinate system</span> Coordinates comprising a distance and an angle

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.

<span class="mw-page-title-main">Spherical coordinate system</span> Coordinates comprising a distance and two angles

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a given point in space is specified by three real numbers: the radial distancer along the radial line connecting the point to the fixed point of origin; the polar angleθ between the radial line and a given polar axis; and the azimuthal angleφ as the angle of rotation of the radial line around the polar axis. (See graphic regarding the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).

<span class="mw-page-title-main">Torque</span> Turning force around an axis

In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M. Just as a linear force is a push or a pull applied to a body, a torque can be thought of as a twist applied to an object with respect to a chosen point; for example, driving a screw uses torque, which is applied by the screwdriver rotating around its axis. A force of three newtons applied two metres from the fulcrum, for example, exerts the same torque as a force of one newton applied six metres from the fulcrum.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Angular velocity</span> Direction and rate of rotation

In physics, angular velocity, also known as angular frequency vector, is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates around an axis of rotation and how fast the axis itself changes direction.

<span class="mw-page-title-main">Inverted pendulum</span> Pendulum with center of mass above pivot

An inverted pendulum is a pendulum that has its center of mass above its pivot point. It is unstable and falls over without additional help. It can be suspended stably in this inverted position by using a control system to monitor the angle of the pole and move the pivot point horizontally back under the center of mass when it starts to fall over, keeping it balanced. The inverted pendulum is a classic problem in dynamics and control theory and is used as a benchmark for testing control strategies. It is often implemented with the pivot point mounted on a cart that can move horizontally under control of an electronic servo system as shown in the photo; this is called a cart and pole apparatus. Most applications limit the pendulum to 1 degree of freedom by affixing the pole to an axis of rotation. Whereas a normal pendulum is stable when hanging downward, an inverted pendulum is inherently unstable, and must be actively balanced in order to remain upright; this can be done either by applying a torque at the pivot point, by moving the pivot point horizontally as part of a feedback system, changing the rate of rotation of a mass mounted on the pendulum on an axis parallel to the pivot axis and thereby generating a net torque on the pendulum, or by oscillating the pivot point vertically. A simple demonstration of moving the pivot point in a feedback system is achieved by balancing an upturned broomstick on the end of one's finger.

In physics, circular motion is movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body, which remains at a constant distance from the axis of rotation. In circular motion, the distance between the body and a fixed point on its surface remains the same, i.e., the body is assumed rigid.

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

In theoretical physics a Coriolis field is one of the apparent gravitational fields felt by a rotating or forcibly-accelerated body, together with the centrifugal field and the Euler field.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

<span class="mw-page-title-main">Axis–angle representation</span> Parameterization of a rotation into a unit vector and angle

In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained. For example, the elevation and azimuth angles of e suffice to locate it in any particular Cartesian coordinate frame.

Isaac Newton's rotating spheres argument attempts to demonstrate that true rotational motion can be defined by observing the tension in the string joining two identical spheres. The basis of the argument is that all observers make two observations: the tension in the string joining the bodies and the rate of rotation of the spheres. Only for the truly non-rotating observer will the tension in the string be explained using only the observed rate of rotation. For all other observers a "correction" is required that accounts for the tension calculated being different from the one expected using the observed rate of rotation. It is one of five arguments from the "properties, causes, and effects" of true motion and rest that support his contention that, in general, true motion and rest cannot be defined as special instances of motion or rest relative to other bodies, but instead can be defined only by reference to absolute space. Alternatively, these experiments provide an operational definition of what is meant by "absolute rotation", and do not pretend to address the question of "rotation relative to what?" General relativity dispenses with absolute space and with physics whose cause is external to the system, with the concept of geodesics of spacetime.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

References

  1. 1 2 Vladimir Igorević Arnolʹd (1989). Mathematical Methods of Classical Mechanics (2nd ed.). Springer. p. 130. ISBN   978-0-387-96890-2.
  2. Robert Resnick & David Halliday (1966). Physics . Wiley. p.  121. ISBN   0-471-34524-5.
  3. Jerrold E. Marsden; Tudor S. Ratiu (1999). Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer. p. 251. ISBN   0-387-98643-X.
  4. John Robert Taylor (2005). Classical Mechanics. University Science Books. p. 343. ISBN   1-891389-22-X.
  5. Stephen T. Thornton & Jerry B. Marion (2004). "Chapter 10". Classical Dynamics of Particles and Systems (5th ed.). Belmont CA: Brook/Cole. ISBN   0-534-40896-6. OCLC   52806908.
  6. David McNaughton. "Centrifugal and Coriolis Effects" . Retrieved 2008-05-18.
  7. David P. Stern. "Frames of reference: The centrifugal force" . Retrieved 2008-10-26.
  8. David Morin (2008). Introduction to classical mechanics: with problems and solutions . Cambridge University Press. p.  469. ISBN   978-0-521-87622-3. acceleration azimuthal Morin.
  9. Grant R. Fowles & George L. Cassiday (1999). Analytical Mechanics (6th ed.). Harcourt College Publishers. p. 178.
  10. Richard H Battin (1999). An introduction to the mathematics and methods of astrodynamics. Reston, VA: American Institute of Aeronautics and Astronautics. p. 102. ISBN   1-56347-342-9.
  11. Jerrold E. Marsden; Tudor S. Ratiu (1999). Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer. p. 251. ISBN   0-387-98643-X.
  12. 1 2 Cornelius Lanczos (1986). The Variational Principles of Mechanics (Reprint of Fourth Edition of 1970 ed.). Dover Publications. Chapter 4, §5. ISBN   0-486-65067-7.
  13. 1 2 John R Taylor (2005). Classical Mechanics. University Science Books. p. 342. ISBN   1-891389-22-X.
  14. Corless, Martin. "Kinematics" (PDF). Aeromechanics I Course Notes. Purdue University. p. 213. Archived from the original (PDF) on 24 October 2012. Retrieved 18 July 2011.
  15. LD Landau & LM Lifshitz (1976). Mechanics (Third ed.). Butterworth-Heinemann. p. 128. ISBN   978-0-7506-2896-9.
  16. 1 2 Louis N. Hand; Janet D. Finch (1998). Analytical Mechanics. Cambridge University Press. p. 267. ISBN   0-521-57572-9.
  17. HS Hans & SP Pui (2003). Mechanics. Tata McGraw-Hill. p. 341. ISBN   0-07-047360-9.
  18. John R Taylor (2005). Classical Mechanics. University Science Books. p. 328. ISBN   1-891389-22-X.
  1. So are functions of and time Similarly are functions of and That these reference frames have the same origin means that for all if and only if
  2. So are 's coordinates with respect to the rotating basis vector ('s coordinates with respect to the inertial frame are not used). Consequently, at any given instant, the rate of change of with respect to these rotating coordinates is So for example, if and are constants, then is just one of the rotating basis vectors and (as expected) its time rate of change with respect to these rotating coordinates is identically (so the formula for given below implies that the derivative at time of this rotating basis vector is ); however, its rate of change with respect to the non-rotating inertial frame will not be constantly except (of course) in the case where is not moving in the inertial frame (this happens, for instance, when the axis of rotation is fixed as the -axis (assuming standard coordinates) in the inertial frame and also or ).