In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch. [1]
Mathematically each quantum mechanical system is associated with a separable complex Hilbert space . A pure state of a quantum system is represented by a non-zero vector in . As the vectors and (with ) represent the same state, the level of the quantum system corresponds to the dimension of the Hilbert space and pure states can be represented as equivalence classes, or, rays in a projective Hilbert space . [2] For a two-dimensional Hilbert space, the space of all such states is the complex projective line This is the Bloch sphere, which can be mapped to the Riemann sphere.
The Bloch sphere is a unit 2-sphere, with antipodal points corresponding to a pair of mutually orthogonal state vectors. The north and south poles of the Bloch sphere are typically chosen to correspond to the standard basis vectors and , respectively, which in turn might correspond e.g. to the spin-up and spin-down states of an electron. This choice is arbitrary, however. The points on the surface of the sphere correspond to the pure states of the system, whereas the interior points correspond to the mixed states. [3] [4] The Bloch sphere may be generalized to an n-level quantum system, but then the visualization is less useful.
The natural metric on the Bloch sphere is the Fubini–Study metric. The mapping from the unit 3-sphere in the two-dimensional state space to the Bloch sphere is the Hopf fibration, with each ray of spinors mapping to one point on the Bloch sphere.
Given an orthonormal basis, any pure state of a two-level quantum system can be written as a superposition of the basis vectors and , where the coefficient of (or contribution from) each of the two basis vectors is a complex number. This means that the state is described by four real numbers. However, only the relative phase between the coefficients of the two basis vectors has any physical meaning (the phase of the quantum system is not directly measurable), so that there is redundancy in this description. We can take the coefficient of to be real and non-negative. This allows the state to be described by only three real numbers, giving rise to the three dimensions of the Bloch sphere.
We also know from quantum mechanics that the total probability of the system has to be one:
Given this constraint, we can write using the following representation:
The representation is always unique, because, even though the value of is not unique when is one of the states (see Bra-ket notation) or , the point represented by and is unique.
The parameters and , re-interpreted in spherical coordinates as respectively the colatitude with respect to the z-axis and the longitude with respect to the x-axis, specify a point
on the unit sphere in .
For mixed states, one considers the density operator. Any two-dimensional density operator ρ can be expanded using the identity I and the Hermitian, traceless Pauli matrices ,
where is called the Bloch vector.
It is this vector that indicates the point within the sphere that corresponds to a given mixed state. Specifically, as a basic feature of the Pauli vector, the eigenvalues of ρ are . Density operators must be positive-semidefinite, so it follows that .
For pure states, one then has
in comportance with the above. [5]
As a consequence, the surface of the Bloch sphere represents all the pure states of a two-dimensional quantum system, whereas the interior corresponds to all the mixed states.
The Bloch vector can be represented in the following basis, with reference to the density operator : [6]
where
This basis is often used in laser theory, where is known as the population inversion. [7] In this basis, the numbers are the expectations of the three Pauli matrices , allowing one to identify the three coordinates with x y and z axes.
Consider an n-level quantum mechanical system. This system is described by an n-dimensional Hilbert space Hn. The pure state space is by definition the set of rays of Hn.
Theorem. Let U(n) be the Lie group of unitary matrices of size n. Then the pure state space of Hn can be identified with the compact coset space
To prove this fact, note that there is a natural group action of U(n) on the set of states of Hn. This action is continuous and transitive on the pure states. For any state , the isotropy group of , (defined as the set of elements of U(n) such that ) is isomorphic to the product group
In linear algebra terms, this can be justified as follows. Any of U(n) that leaves invariant must have as an eigenvector. Since the corresponding eigenvalue must be a complex number of modulus 1, this gives the U(1) factor of the isotropy group. The other part of the isotropy group is parametrized by the unitary matrices on the orthogonal complement of , which is isomorphic to U(n − 1). From this the assertion of the theorem follows from basic facts about transitive group actions of compact groups.
The important fact to note above is that the unitary group acts transitively on pure states.
Now the (real) dimension of U(n) is n2. This is easy to see since the exponential map
is a local homeomorphism from the space of self-adjoint complex matrices to U(n). The space of self-adjoint complex matrices has real dimension n2.
Corollary. The real dimension of the pure state space of Hn is 2n − 2.
In fact,
Let us apply this to consider the real dimension of an m qubit quantum register. The corresponding Hilbert space has dimension 2m.
Corollary. The real dimension of the pure state space of an m-qubit quantum register is 2m+1 − 2.
Mathematically the Bloch sphere for a two-spinor state can be mapped to a Riemann sphere , i.e., the projective Hilbert space with the 2-dimensional complex Hilbert space a representation space of SO(3). [8] Given a pure state
where and are complex numbers which are normalized so that
and such that and , i.e., such that and form a basis and have diametrically opposite representations on the Bloch sphere, then let
be their ratio.
If the Bloch sphere is thought of as being embedded in with its center at the origin and with radius one, then the plane z = 0 (which intersects the Bloch sphere at a great circle; the sphere's equator, as it were) can be thought of as an Argand diagram. Plot point u in this plane — so that in it has coordinates .
Draw a straight line through u and through the point on the sphere that represents . (Let (0,0,1) represent and (0,0,−1) represent .) This line intersects the sphere at another point besides . (The only exception is when , i.e., when and .) Call this point P. Point u on the plane z = 0 is the stereographic projection of point P on the Bloch sphere. The vector with tail at the origin and tip at P is the direction in 3-D space corresponding to the spinor . The coordinates of P are
Formulations of quantum mechanics in terms of pure states are adequate for isolated systems; in general quantum mechanical systems need to be described in terms of density operators. The Bloch sphere parametrizes not only pure states but mixed states for 2-level systems. The density operator describing the mixed-state of a 2-level quantum system (qubit) corresponds to a point inside the Bloch sphere with the following coordinates:
where is the probability of the individual states within the ensemble and are the coordinates of the individual states (on the surface of Bloch sphere). The set of all points on and inside the Bloch sphere is known as the Bloch ball.
For states of higher dimensions there is difficulty in extending this to mixed states. The topological description is complicated by the fact that the unitary group does not act transitively on density operators. The orbits moreover are extremely diverse as follows from the following observation:
Theorem. Suppose A is a density operator on an n level quantum mechanical system whose distinct eigenvalues are μ1, ..., μk with multiplicities n1, ..., nk. Then the group of unitary operators V such that V A V* = A is isomorphic (as a Lie group) to
In particular the orbit of A is isomorphic to
It is possible to generalize the construction of the Bloch ball to dimensions larger than 2, but the geometry of such a "Bloch body" is more complicated than that of a ball. [9]
A useful advantage of the Bloch sphere representation is that the evolution of the qubit state is describable by rotations of the Bloch sphere. The most concise explanation for why this is the case is that the Lie algebra for the group of unitary and hermitian matrices is isomorphic to the Lie algebra of the group of three dimensional rotations . [10]
The rotations of the Bloch sphere about the Cartesian axes in the Bloch basis are given by [11]
If is a real unit vector in three dimensions, the rotation of the Bloch sphere about this axis is given by:
An interesting thing to note is that this expression is identical under relabelling to the extended Euler formula for quaternions.
Ballentine [12] presents an intuitive derivation for the infinitesimal unitary transformation. This is important for understanding why the rotations of Bloch spheres are exponentials of linear combinations of Pauli matrices. Hence a brief treatment on this is given here. A more complete description in a quantum mechanical context can be found here.
Consider a family of unitary operators representing a rotation about some axis. Since the rotation has one degree of freedom, the operator acts on a field of scalars such that:
where
We define the infinitesimal unitary as the Taylor expansion truncated at second order.
By the unitary condition:
Hence
For this equality to hold true (assuming is negligible) we require
This results in a solution of the form:
where is any Hermitian transformation, and is called the generator of the unitary family. Hence
Since the Pauli matrices are unitary Hermitian matrices and have eigenvectors corresponding to the Bloch basis, , we can naturally see how a rotation of the Bloch sphere about an arbitrary axis is described by
with the rotation generator given by
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as or where is the Laplace operator, is the divergence operator, is the gradient operator, and is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function.
In mathematics, a unit vector in a normed vector space is a vector of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in .
In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.
In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.
In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.
The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation. They were defined by George Gabriel Stokes in 1852, as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of polarization (p), and the shape parameters of the polarization ellipse. The effect of an optical system on the polarization of light can be determined by constructing the Stokes vector for the input light and applying Mueller calculus, to obtain the Stokes vector of the light leaving the system. They can be determined from directly observable phenomena. The original Stokes paper was discovered independently by Francis Perrin in 1942 and by Subrahamanyan Chandrasekhar in 1947, who named it as the Stokes parameters.
In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.
Sinusoidal plane-wave solutions are particular solutions to the wave equation.
Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
In quantum information theory, the Wehrl entropy, named after Alfred Wehrl, is a classical entropy of a quantum-mechanical density matrix. It is a type of quasi-entropy defined for the Husimi Q representation of the phase-space quasiprobability distribution. See for a comprehensive review of basic properties of classical, quantum and Wehrl entropies, and their implications in statistical mechanics.
In physics, the distorted Schwarzschild metric is the metric of a standard/isolated Schwarzschild spacetime exposed in external fields. In numerical simulation, the Schwarzschild metric can be distorted by almost arbitrary kinds of external energy–momentum distribution. However, in exact analysis, the mature method to distort the standard Schwarzschild metric is restricted to the framework of Weyl metrics.
Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.
In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.
Quantum artificial life is the application of quantum algorithms with the ability to simulate biological behavior. Quantum computers offer many potential improvements to processes performed on classical computers, including machine learning and artificial intelligence. Artificial intelligence applications are often inspired by the idea of mimicking human brains through closely related biomimicry. This has been implemented to a certain extent on classical computers, but quantum computers offer many advantages in the simulation of artificial life. Artificial life and artificial intelligence are extremely similar, with minor differences; the goal of studying artificial life is to understand living beings better, while the goal of artificial intelligence is to create intelligent beings.
In quantum computing, the variational quantum eigensolver (VQE) is a quantum algorithm for quantum chemistry, quantum simulations and optimization problems. It is a hybrid algorithm that uses both classical computers and quantum computers to find the ground state of a given physical system. Given a guess or ansatz, the quantum processor calculates the expectation value of the system with respect to an observable, often the Hamiltonian, and a classical optimizer is used to improve the guess. The algorithm is based on the variational method of quantum mechanics.