Bending moment

Last updated
Shear and moment diagram for a simply supported beam with a concentrated load at mid-span. Shear Moment Diagram.svg
Shear and moment diagram for a simply supported beam with a concentrated load at mid-span.

In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. [1] [2] The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported (free to rotate and therefore lacking bending moments) at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end (neither simple nor fixed). In reality, beam supports are usually neither absolutely fixed nor absolutely rotating freely.

Contents

The internal reaction loads in a cross-section of the structural element can be resolved into a resultant force and a resultant couple. [3] For equilibrium, the moment created by external forces/moments must be balanced by the couple induced by the internal loads. The resultant internal couple is called the bending moment while the resultant internal force is called the shear force (if it is transverse to the plane of element) or the normal force (if it is along the plane of the element). Normal force is also termed as axial force.

The bending moment at a section through a structural element may be defined as the sum of the moments about that section of all external forces acting to one side of that section. The forces and moments on either side of the section must be equal in order to counteract each other and maintain a state of equilibrium so the same bending moment will result from summing the moments, regardless of which side of the section is selected. If clockwise bending moments are taken as negative, then a negative bending moment within an element will cause "hogging", and a positive moment will cause "sagging". It is therefore clear that a point of zero bending moment within a beam is a point of contraflexure that is, the point of transition from hogging to sagging or vice versa.

Moments and torques are measured as a force multiplied by a distance so they have as unit newton-metres (N·m), or pound-foot (lb·ft). The concept of bending moment is very important in engineering (particularly in civil and mechanical engineering) and physics.

Background

Tensile and compressive stresses increase proportionally with bending moment, but are also dependent on the second moment of area of the cross-section of a beam (that is, the shape of the cross-section, such as a circle, square or I-beam being common structural shapes). Failure in bending will occur when the bending moment is sufficient to induce tensile/compressive stresses greater than the yield stress of the material throughout the entire cross-section. In structural analysis, this bending failure is called a plastic hinge, since the full load carrying ability of the structural element is not reached until the full cross-section is past the yield stress. It is possible that failure of a structural element in shear may occur before failure in bending, however the mechanics of failure in shear and in bending are different.

Moments are calculated by multiplying the external vector forces (loads or reactions) by the vector distance at which they are applied. When analysing an entire element, it is sensible to calculate moments at both ends of the element, at the beginning, centre and end of any uniformly distributed loads, and directly underneath any point loads. Of course any "pin-joints" within a structure allow free rotation, and so zero moment occurs at these points as there is no way of transmitting turning forces from one side to the other.

It is more common to use the convention that a clockwise bending moment to the left of the point under consideration is taken as positive. This then corresponds to the second derivative of a function which, when positive, indicates a curvature that is 'lower at the centre' i.e. sagging. When defining moments and curvatures in this way calculus can be more readily used to find slopes and deflections.

Critical values within the beam are most commonly annotated using a bending moment diagram, where negative moments are plotted to scale above a horizontal line and positive below. Bending moment varies linearly over unloaded sections, and parabolically over uniformly loaded sections.

Engineering descriptions of the computation of bending moments can be confusing because of unexplained sign conventions and implicit assumptions. The descriptions below use vector mechanics to compute moments of force and bending moments in an attempt to explain, from first principles, why particular sign conventions are chosen.

Computing the moment of force

Computing the moment of force in a beam. Beam moment plain.svg
Computing the moment of force in a beam.

An important part of determining bending moments in practical problems is the computation of moments of force. Let be a force vector acting at a point A in a body. The moment of this force about a reference point (O) is defined as [2]

where is the moment vector and is the position vector from the reference point (O) to the point of application of the force (A). The symbol indicates the vector cross product. For many problems, it is more convenient to compute the moment of force about an axis that passes through the reference point O. If the unit vector along the axis is , the moment of force about the axis is defined as

where indicates the vector dot product.

Example

The adjacent figure shows a beam that is acted upon by a force . If the coordinate system is defined by the three unit vectors , we have the following

Therefore,

The moment about the axis is then

Sign conventions

The negative value suggests that a moment that tends to rotate a body clockwise around an axis should have a negative sign. However, the actual sign depends on the choice of the three axes . For instance, if we choose another right handed coordinate system with , we have

Then,

For this new choice of axes, a positive moment tends to rotate body clockwise around an axis.

Computing the bending moment

In a rigid body or in an unconstrained deformable body, the application of a moment of force causes a pure rotation. But if a deformable body is constrained, it develops internal forces in response to the external force so that equilibrium is maintained. An example is shown in the figure below. These internal forces will cause local deformations in the body.

For equilibrium, the sum of the internal force vectors is equal to the negative of the sum of the applied external forces, and the sum of the moment vectors created by the internal forces is equal to the negative of the moment of the external force. The internal force and moment vectors are oriented in such a way that the total force (internal + external) and moment (external + internal) of the system is zero. The internal moment vector is called the bending moment. [1]

Though bending moments have been used to determine the stress states in arbitrary shaped structures, the physical interpretation of the computed stresses is problematic. However, physical interpretations of bending moments in beams and plates have a straightforward interpretation as the stress resultants in a cross-section of the structural element. For example, in a beam in the figure, the bending moment vector due to stresses in the cross-section A perpendicular to the x-axis is given by

Expanding this expression we have,

We define the bending moment components as

The internal moments are computed about an origin that is at the neutral axis of the beam or plate and the integration is through the thickness ()

Example

Computing the bending moment in a beam. Beam bending moment plain.svg
Computing the bending moment in a beam.

In the beam shown in the adjacent figure, the external forces are the applied force at point A () and the reactions at the two support points O and B ( and ). For this situation, the only non-zero component of the bending moment is

where is the height in the direction of the beam. The minus sign is included to satisfy the sign convention.

In order to calculate , we begin by balancing the forces, which gives one equation with the two unknown reactions,

To obtain each reaction a second equation is required. Balancing the moments about any arbitrary point X would give us a second equation we can use to solve for and in terms of . Balancing about the point O is simplest but let's balance about point A just to illustrate the point, i.e.

If is the length of the beam, we have

Evaluating the cross-products:

If we solve for the reactions we have

Now to obtain the internal bending moment at X we sum all the moments about the point X due to all the external forces to the right of X (on the positive side), and there is only one contribution in this case,

We can check this answer by looking at the free body diagram and the part of the beam to the left of point X, and the total moment due to these external forces is

If we compute the cross products, we have

Thanks to the equilibrium, the internal bending moment due to external forces to the left of X must be exactly balanced by the internal turning force obtained by considering the part of the beam to the right of X

which is clearly the case.

Sign convention

In the above discussion, it is implicitly assumed that the bending moment is positive when the top of the beam is compressed. That can be seen if we consider a linear distribution of stress in the beam and find the resulting bending moment. Let the top of the beam be in compression with a stress and let the bottom of the beam have a stress . Then the stress distribution in the beam is . The bending moment due to these stresses is

where is the area moment of inertia of the cross-section of the beam. Therefore, the bending moment is positive when the top of the beam is in compression.

Many authors follow a different convention in which the stress resultant is defined as

In that case, positive bending moments imply that the top of the beam is in tension. Of course, the definition of top depends on the coordinate system being used. In the examples above, the top is the location with the largest -coordinate.

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, specifically in electromagnetism, the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of It says that the electromagnetic force on a charge q is a combination of (1) a force in the direction of the electric field E, and (2) a force at right angles to both the magnetic field B and the velocity v of the charge.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables, each of which clusters around a mean value.

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

<span class="mw-page-title-main">Covariance matrix</span> Measure of covariance of components of a random vector

In probability theory and statistics, a covariance matrix is a square matrix giving the covariance between each pair of elements of a given random vector.

<span class="mw-page-title-main">Stress (mechanics)</span> Physical quantity that expresses internal forces in a continuous material

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has dimension of force per area, with SI units of newtons per square meter (N/m2) or pascal (Pa).

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

<span class="mw-page-title-main">Bending</span> Strain caused by an external load

In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.

<span class="mw-page-title-main">Cartesian tensor</span>

In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is done through an orthogonal transformation.

<span class="mw-page-title-main">Euler–Bernoulli beam theory</span> Method for load calculation in construction

Euler–Bernoulli beam theory is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral loads only. By ignoring the effects of shear deformation and rotatory inertia, it is thus a special case of Timoshenko–Ehrenfest beam theory. It was first enunciated circa 1750, but was not applied on a large scale until the development of the Eiffel Tower and the Ferris wheel in the late 19th century. Following these successful demonstrations, it quickly became a cornerstone of engineering and an enabler of the Second Industrial Revolution.

<span class="mw-page-title-main">Cauchy stress tensor</span> Representation of mechanical stress at every point within a deformed 3D object

In continuum mechanics, the Cauchy stress tensor, also called true stress tensor or simply stress tensor, completely defines the state of stress at a point inside a material in the deformed state, placement, or configuration. The second order tensor consists of nine components and relates a unit-length direction vector e to the traction vectorT(e) across an imaginary surface perpendicular to e:

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span> Type of stress-energy tensor

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Critical state soil mechanics</span>

Critical state soil mechanics is the area of soil mechanics that encompasses the conceptual models representing the mechanical behavior of saturated remoulded soils based on the critical state concept. At the critical state, the relationship between forces applied in the soil (stress), and the resulting deformation resulting from this stress (strain) becomes constant. The soil will continue to deform, but the stress will no longer increase.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

<span class="mw-page-title-main">Sandwich theory</span> Theory describing the behaviour of three-layered structures or materials

Sandwich theory describes the behaviour of a beam, plate, or shell which consists of three layers—two facesheets and one core. The most commonly used sandwich theory is linear and is an extension of first-order beam theory. The linear sandwich theory is of importance for the design and analysis of sandwich panels, which are of use in building construction, vehicle construction, airplane construction and refrigeration engineering.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface. It is illustrated in the figure, where the direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule. For the right hand the fingers circulate along ∂Σ and the thumb is directed along n.

Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions. As a consequence the three traction components that vary from point to point in a cross-section can be replaced with a set of resultant forces and resultant moments. These are the stress resultants that may be used to determine the detailed stress state in the structural element. A three-dimensional problem can then be reduced to a one-dimensional problem or a two-dimensional problem.

<span class="mw-page-title-main">Matrix representation of Maxwell's equations</span>

In electromagnetism, a branch of fundamental physics, the matrix representations of the Maxwell's equations are a formulation of Maxwell's equations using matrices, complex numbers, and vector calculus. These representations are for a homogeneous medium, an approximation in an inhomogeneous medium. A matrix representation for an inhomogeneous medium was presented using a pair of matrix equations. A single equation using 4 × 4 matrices is necessary and sufficient for any homogeneous medium. For an inhomogeneous medium it necessarily requires 8 × 8 matrices.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

References

  1. 1 2 Gere, J.M.; Timoshenko, S.P. (1996), Mechanics of Materials:Forth edition , Nelson Engineering, ISBN   0534934293
  2. 1 2 Beer, F.; Johnston, E.R. (1984), Vector mechanics for engineers: statics, McGraw Hill, pp. 62–76
  3. Baker, Daniel W.; Haynes, William. Statics: Internal Loads.