Part of a series on |
Continuum mechanics |
---|
In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. [1] The typical thickness to width ratio of a plate structure is less than 0.1.[ citation needed ] A plate theory takes advantage of this disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads.
Of the numerous plate theories that have been developed since the late 19th century, two are widely accepted and used in engineering. These are
The Kirchhoff–Love theory is an extension of Euler–Bernoulli beam theory to thin plates. The theory was developed in 1888 by Love [2] using assumptions proposed by Kirchhoff. It is assumed that a mid-surface plane can be used to represent the three-dimensional plate in two-dimensional form.
The following kinematic assumptions are made in this theory: [3]
The Kirchhoff hypothesis implies that the displacement field has the form
where and are the Cartesian coordinates on the mid-surface of the undeformed plate, is the coordinate for the thickness direction, are the in-plane displacements of the mid-surface, and is the displacement of the mid-surface in the direction.
If are the angles of rotation of the normal to the mid-surface, then in the Kirchhoff–Love theory
For the situation where the strains in the plate are infinitesimal and the rotations of the mid-surface normals are less than 10° the strains-displacement relations are
Therefore, the only non-zero strains are in the in-plane directions.
If the rotations of the normals to the mid-surface are in the range of 10° to 15°, the strain-displacement relations can be approximated using the von Kármán strains. Then the kinematic assumptions of Kirchhoff-Love theory lead to the following strain-displacement relations
This theory is nonlinear because of the quadratic terms in the strain-displacement relations.
The equilibrium equations for the plate can be derived from the principle of virtual work. For the situation where the strains and rotations of the plate are small, the equilibrium equations for an unloaded plate are given by
where the stress resultants and stress moment resultants are defined as
and the thickness of the plate is . The quantities are the stresses.
If the plate is loaded by an external distributed load that is normal to the mid-surface and directed in the positive direction, the principle of virtual work then leads to the equilibrium equations
For moderate rotations, the strain-displacement relations take the von Karman form and the equilibrium equations can be expressed as
The boundary conditions that are needed to solve the equilibrium equations of plate theory can be obtained from the boundary terms in the principle of virtual work.
For small strains and small rotations, the boundary conditions are
Note that the quantity is an effective shear force.
The stress–strain relations for a linear elastic Kirchhoff plate are given by
Since and do not appear in the equilibrium equations it is implicitly assumed that these quantities do not have any effect on the momentum balance and are neglected.
It is more convenient to work with the stress and moment resultants that enter the equilibrium equations. These are related to the displacements by
and
The extensional stiffnesses are the quantities
The bending stiffnesses (also called flexural rigidity) are the quantities
For an isotropic and homogeneous plate, the stress–strain relations are
The moments corresponding to these stresses are
The displacements and are zero under pure bending conditions. For an isotropic, homogeneous plate under pure bending the governing equation is
In index notation,
In direct tensor notation, the governing equation is
For a transversely loaded plate without axial deformations, the governing equation has the form
where
for a plate with thickness . In index notation,
and in direct notation
In cylindrical coordinates , the governing equation is
For an orthotropic plate
Therefore,
and
The governing equation of an orthotropic Kirchhoff plate loaded transversely by a distributed load per unit area is
where
The dynamic theory of plates determines the propagation of waves in the plates, and the study of standing waves and vibration modes.
The governing equations for the dynamics of a Kirchhoff–Love plate are
where, for a plate with density ,
and
The figures below show some vibrational modes of a circular plate.
The governing equations simplify considerably for isotropic and homogeneous plates for which the in-plane deformations can be neglected and have the form
where is the bending stiffness of the plate. For a uniform plate of thickness ,
In direct notation
In the theory of thick plates, or theory of Yakov S. Uflyand [4] (see, for details, Elishakoff's handbook [5] ), Raymond Mindlin [6] and Eric Reissner, the normal to the mid-surface remains straight but not necessarily perpendicular to the mid-surface. If and designate the angles which the mid-surface makes with the axis then
Then the Mindlin–Reissner hypothesis implies that
Depending on the amount of rotation of the plate normals two different approximations for the strains can be derived from the basic kinematic assumptions.
For small strains and small rotations the strain-displacement relations for Mindlin–Reissner plates are
The shear strain, and hence the shear stress, across the thickness of the plate is not neglected in this theory. However, the shear strain is constant across the thickness of the plate. This cannot be accurate since the shear stress is known to be parabolic even for simple plate geometries. To account for the inaccuracy in the shear strain, a shear correction factor () is applied so that the correct amount of internal energy is predicted by the theory. Then
The equilibrium equations have slightly different forms depending on the amount of bending expected in the plate. For the situation where the strains and rotations of the plate are small the equilibrium equations for a Mindlin–Reissner plate are
The resultant shear forces in the above equations are defined as
The boundary conditions are indicated by the boundary terms in the principle of virtual work.
If the only external force is a vertical force on the top surface of the plate, the boundary conditions are
The stress–strain relations for a linear elastic Mindlin–Reissner plate are given by
Since does not appear in the equilibrium equations it is implicitly assumed that it do not have any effect on the momentum balance and is neglected. This assumption is also called the plane stress assumption. The remaining stress–strain relations for an orthotropic material, in matrix form, can be written as
Then,
and
For the shear terms
The extensional stiffnesses are the quantities
The bending stiffnesses are the quantities
For uniformly thick, homogeneous, and isotropic plates, the stress–strain relations in the plane of the plate are
where is the Young's modulus, is the Poisson's ratio, and are the in-plane strains. The through-the-thickness shear stresses and strains are related by
where is the shear modulus.
The relations between the stress resultants and the generalized displacements for an isotropic Mindlin–Reissner plate are:
and
The bending rigidity is defined as the quantity
For a plate of thickness , the bending rigidity has the form
where
If we ignore the in-plane extension of the plate, the governing equations are
In terms of the generalized deformations , the three governing equations are
The boundary conditions along the edges of a rectangular plate are
In general, exact solutions for cantilever plates using plate theory are quite involved and few exact solutions can be found in the literature. Reissner and Stein [7] provide a simplified theory for cantilever plates that is an improvement over older theories such as Saint-Venant plate theory.
The Reissner-Stein theory assumes a transverse displacement field of the form
The governing equations for the plate then reduce to two coupled ordinary differential equations:
where
At , since the beam is clamped, the boundary conditions are
The boundary conditions at are
where
Derivation of Reissner–Stein cantilever plate equations |
---|
The strain energy of bending of a thin rectangular plate of uniform thickness is given by where is the transverse displacement, is the length, is the width, is the Poisson's ratio, is the Young's modulus, and The potential energy of transverse loads (per unit length) is The potential energy of in-plane loads (per unit width) is The potential energy of tip forces (per unit width), and bending moments and (per unit width) is A balance of energy requires that the total energy is With the Reissener–Stein assumption for the displacement, we have and Taking the first variation of with respect to and setting it to zero gives us the Euler equations and where Since the beam is clamped at , we have The boundary conditions at can be found by integration by parts: where |
In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.
In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.
In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.
The Föppl–von Kármán equations, named after August Föppl and Theodore von Kármán, are a set of nonlinear partial differential equations describing the large deflections of thin flat plates. With applications ranging from the design of submarine hulls to the mechanical properties of cell wall, the equations are notoriously difficult to solve, and take the following form:
The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form.
Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments. The amount of deflection can be determined by solving the differential equations of an appropriate plate theory. The stresses in the plate can be calculated from these deflections. Once the stresses are known, failure theories can be used to determine whether a plate will fail under a given load.
The vibration of plates is a special case of the more general problem of mechanical vibrations. The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two. This permits a two-dimensional plate theory to give an excellent approximation to the actual three-dimensional motion of a plate-like object.
The Uflyand-Mindlin theory of vibrating plates is an extension of Kirchhoff–Love plate theory that takes into account shear deformations through-the-thickness of a plate. The theory was proposed in 1948 by Yakov Solomonovich Uflyand (1916-1991) and in 1951 by Raymond Mindlin with Mindlin making reference to Uflyand's work. Hence, this theory has to be referred to as Uflyand-Mindlin plate theory, as is done in the handbook by Elishakoff, and in papers by Andronov, Elishakoff, Hache and Challamel, Loktev, Rossikhin and Shitikova and Wojnar. In 1994, Elishakoff suggested to neglect the fourth-order time derivative in Uflyand-Mindlin equations. A similar, but not identical, theory in static setting, had been proposed earlier by Eric Reissner in 1945. Both theories are intended for thick plates in which the normal to the mid-surface remains straight but not necessarily perpendicular to the mid-surface. The Uflyand-Mindlin theory is used to calculate the deformations and stresses in a plate whose thickness is of the order of one tenth the planar dimensions while the Kirchhoff–Love theory is applicable to thinner plates.
In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.