Bubble (physics)

Last updated
Air bubbles rising from a scuba diver in water Isla de Corbera, Santander, Espana, 2019-08-15, DD 68.jpg
Air bubbles rising from a scuba diver in water
A soap bubble floating in the air Bubble brokenchopstick.jpg
A soap bubble floating in the air

A bubble is a globule of a gas substance in a liquid. In the opposite case, a globule of a liquid in a gas, is called a drop. [1] Due to the Marangoni effect, bubbles may remain intact when they reach the surface of the immersive substance.

Contents

Common examples

Bubbles are seen in many places in everyday life, for example:

Physics and chemistry

Bubbles form and coalesce into globular shapes because those shapes are at a lower energy state. For the physics and chemistry behind it, see nucleation.

Appearance

Bubbles of gas rising in a soft drink Soda bubbles macro.jpg
Bubbles of gas rising in a soft drink

Bubbles are visible because they have a different refractive index (RI) than the surrounding substance. For example, the RI of air is approximately 1.0003 and the RI of water is approximately 1.333. Snell's Law describes how electromagnetic waves change direction at the interface between two mediums with different RI; thus bubbles can be identified from the accompanying refraction and internal reflection even though both the immersed and immersing mediums are transparent.

The above explanation only holds for bubbles of one medium submerged in another medium (e.g. bubbles of gas in a soft drink); the volume of a membrane bubble (e.g. soap bubble) will not distort light very much, and one can only see a membrane bubble due to thin-film diffraction and reflection.

Applications

Nucleation can be intentionally induced, for example, to create a bubblegram in a solid.

In medical ultrasound imaging, small encapsulated bubbles called contrast agent are used to enhance the contrast.

In thermal inkjet printing, vapor bubbles are used as actuators. They are occasionally used in other microfluidics applications as actuators. [2]

The violent collapse of bubbles (cavitation) near solid surfaces and the resulting impinging jet constitute the mechanism used in ultrasonic cleaning. The same effect, but on a larger scale, is used in focused energy weapons such as the bazooka and the torpedo. Pistol shrimp also uses a collapsing cavitation bubble as a weapon. The same effect is used to treat kidney stones in a lithotripter. Marine mammals such as dolphins and whales use bubbles for entertainment or as hunting tools. Aerators cause the dissolution of gas in the liquid by injecting bubbles.

Bubbles are used by chemical and metallurgic engineer in processes such as distillation, absorption, flotation and spray drying. The complex processes involved often require consideration for mass and heat transfer and are modeled using fluid dynamics. [3]

The star-nosed mole and the American water shrew can smell underwater by rapidly breathing through their nostrils and creating a bubble. [4]

Research on the origin of life on Earth suggests that bubbles may have played an integral role in confining and concentrating precursor molecules for life, a function currently performed by cell membranes. [5]

Bubble lasers use bubbles as the optical resonator. They can be used as highly sensitive pressure sensors. [6]

Pulsation

When bubbles are disturbed (for example when a gas bubble is injected underwater), the wall oscillates. Although it is often visually masked by much larger deformations in shape, a component of the oscillation changes the bubble volume (i.e. it is pulsation) which, in the absence of an externally-imposed sound field, occurs at the bubble's natural frequency. The pulsation is the most important component of the oscillation, acoustically, because by changing the gas volume, it changes its pressure, and leads to the emission of sound at the bubble's natural frequency. For air bubbles in water, large bubbles (negligible surface tension and thermal conductivity) undergo adiabatic pulsations, which means that no heat is transferred either from the liquid to the gas or vice versa. The natural frequency of such bubbles is determined by the equation: [7] [8]

where:

For air bubbles in water, smaller bubbles undergo isothermal pulsations. The corresponding equation for small bubbles of surface tension σ (and negligible liquid viscosity) is [8]

Excited bubbles trapped underwater are the major source of liquid sounds, such as inside our knuckles during knuckle cracking, [9] and when a rain droplet impacts a surface of water. [10] [11]

Physiology and medicine

Injury by bubble formation and growth in body tissues is the mechanism of decompression sickness, which occurs when supersaturated dissolved inert gases leave the solution as bubbles during decompression. The damage can be due to mechanical deformation of tissues due to bubble growth in situ, or by blocking blood vessels where the bubble has lodged.

Arterial gas embolism can occur when a gas bubble is introduced to the circulatory system and lodges in a blood vessel that is too small for it to pass through under the available pressure difference. This can occur as a result of decompression after hyperbaric exposure, a lung overexpansion injury, during intravenous fluid administration, or during surgery.

See also

Related Research Articles

Density is a substance's mass per unit of volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume: where ρ is the density, m is the mass, and V is the volume. In some cases, density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight.

<span class="mw-page-title-main">Pressure</span> Force distributed over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is preferred in SI, whereas the term "specific gravity" is gradually being abandoned.

<span class="mw-page-title-main">Drop (liquid)</span> Small unit of liquid

A drop or droplet is a small column of liquid, bounded completely or almost completely by free surfaces. A drop may form when liquid accumulates at the end of a tube or other surface boundary, producing a hanging drop called a pendant drop. Drops may also be formed by the condensation of a vapor or by atomization of a larger mass of solid. Water vapor will condense into droplets depending on the temperature. The temperature at which droplets form is called the dew point.

<span class="mw-page-title-main">Speed of sound</span> Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 m/s, or 1 km in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s. More simply, the speed of sound is how fast vibrations travel.

<span class="mw-page-title-main">Buoyancy</span> Upward force that opposes the weight of an object immersed in fluid

Buoyancy, or upthrust, is a gravitational force, a net upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus, the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.

<span class="mw-page-title-main">Foam</span> Form of matter

Foams are materials formed by trapping pockets of gas in a liquid or solid.

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.

<span class="mw-page-title-main">Antibubble</span> Droplet of liquid surrounded by a thin film of gas

An antibubble is a droplet of liquid surrounded by a thin film of gas, as opposed to a gas bubble, which is a sphere of gas surrounded by a liquid. Antibubbles are formed when liquid drops or flows turbulently into the same or another liquid. They can either skim across the surface of a liquid such as water, in which case they are also called water globules, or they can be completely submerged into the liquid to which they are directed.

<span class="mw-page-title-main">Hydrostatics</span> Branch of fluid mechanics that studies fluids at rest

Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium and "the pressure in a fluid or exerted by a fluid on an immersed body".

The Varying Permeability Model, Variable Permeability Model or VPM is an algorithm that is used to calculate the decompression stops needed for ambient pressure dive profiles using specified breathing gases. It was developed by D.E. Yount and others for use in professional diving and recreational diving. It was developed to model laboratory observations of bubble formation and growth in both inanimate and in vivo systems exposed to pressure. In 1986, this model was applied by researchers at the University of Hawaii to calculate diving decompression tables.

The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials. It is also used for determination of pore size distribution of a porous medium using adsorption porosimetry. The equation is named in honor of William Thomson, also known as Lord Kelvin.

<span class="mw-page-title-main">Nonlinear acoustics</span>

Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics and elasticity. These equations are generally nonlinear, and their traditional linearization is no longer possible. The solutions of these equations show that, due to the effects of nonlinearity, sound waves are being distorted as they travel.

The hot chocolate effect is a phenomenon of wave mechanics in which the pitch heard from tapping a cup of hot liquid rises after the addition of a soluble powder. The effect is thought to happen because upon initial stirring, entrained gas bubbles reduce the speed of sound in the liquid, lowering the frequency. As the bubbles clear, sound travels faster in the liquid and the frequency increases.

In fluid thermodynamics, nucleate boiling is a type of boiling that takes place when the surface temperature is hotter than the saturated fluid temperature by a certain amount but where the heat flux is below the critical heat flux. For water, as shown in the graph below, nucleate boiling occurs when the surface temperature is higher than the saturation temperature by between 10 and 30 °C. The critical heat flux is the peak on the curve between nucleate boiling and transition boiling. The heat transfer from surface to liquid is greater than that in film boiling.

<span class="mw-page-title-main">Minnaert resonance</span>

The Minnaert resonance is a phenomenon associated with a gas bubble pulsating at its natural frequency in a liquid, neglecting the effects of surface tension and viscous attenuation. It is the frequency of the sound made by a drop of water from a tap falling in water underneath, trapping a bubble of air as it falls. The natural frequency of the entrapped air bubble in the water is given by

<span class="mw-page-title-main">Mechanism of sonoluminescence</span>

Sonoluminescence is a phenomenon that occurs when a small gas bubble is acoustically suspended and periodically driven in a liquid solution at ultrasonic frequencies, resulting in bubble collapse, cavitation, and light emission. The thermal energy that is released from the bubble collapse is so great that it can cause weak light emission. The mechanism of the light emission remains uncertain, but some of the current theories, which are categorized under either thermal or electrical processes, are Bremsstrahlung radiation, argon rectification hypothesis, and hot spot. Some researchers are beginning to favor thermal process explanations as temperature differences have consistently been observed with different methods of spectral analysis. In order to understand the light emission mechanism, it is important to know what is happening in the bubble's interior and at the bubble's surface.

Cavitation modelling is a type of computational fluid dynamic (CFD) that represents the flow of fluid during cavitation. It covers a wide range of applications, such as pumps, water turbines, pump inducers, and fuel cavitation in orifices as commonly encountered in fuel injection systems.

<span class="mw-page-title-main">Physiology of decompression</span> The physiological basis for decompression theory and practice

The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure. It involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.

Bjerknes forces are translational forces on bubbles in a sound wave. The phenomenon is a type of acoustic radiation force. Primary Bjerknes forces are caused by an external sound field; secondary Bjerknes forces are attractive or repulsive forces between pairs of bubbles in the same sound field caused by the pressure field generated by each bubble volume's oscillations. They were first described by Vilhelm Bjerknes in his 1906 Fields of Force.

References

  1. Subramanian, R. Shankar; Balasubramaniam, R. (2001-04-09). The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press. ISBN   9780521496056.
  2. R. J. Dijkink, J. P. van der Dennen, C. D. Ohl, A. Prosperetti, The ‘acoustic scallop’: a bubble-powered actuator, J. Micromech. Microeng. 16 1653 (2006)
  3. Weber; et al. (1978). Bubbles, Drops and Particles. New York: Dover Publications. ISBN   978-0-486-44580-9.
  4. Roxanne Khamsi. "Star-nosed mole can sniff underwater, videos reveal".
  5. Whitcomb, Isobel (August 6, 2019). "The Key to Life's Emergence? Bubbles, New Study Argues". LiveScience. Retrieved January 8, 2022.
  6. Miller, Johanna. "Bubble lasers can be sturdy and sensitive". Physics Today. American Institute of Physics. Retrieved 2 April 2024.
  7. Minnaert, Marcel, On musical air-bubbles and the sounds of running water, Phil. Mag. 16, 235-248 (1933).
  8. 1 2 Leighton, Timothy G., The Acoustic Bubble (Academic, London, 1994).
  9. Chandran Suja, V.; Barakat, A. I. (2018-03-29). "A Mathematical Model for the Sounds Produced by Knuckle Cracking". Scientific Reports. 8 (1): 4600. Bibcode:2018NatSR...8.4600C. doi:10.1038/s41598-018-22664-4. ISSN   2045-2322. PMC   5876406 . PMID   29599511.
  10. Prosperetti, Andrea; Oguz, Hasan N. (1993). "The impact of drops on liquid surfaces and the underwater noise of rain". Annual Review of Fluid Mechanics. 25: 577–602. Bibcode:1993AnRFM..25..577P. doi:10.1146/annurev.fl.25.010193.003045.
  11. Rankin, Ryan C. (June 2005). "Bubble Resonance". The Physics of Bubbles, Antibubbles, and all That. Retrieved 2006-12-09.