Nanobubble

Last updated

A nanobubble is a small sub-micrometer gas-containing cavity, or bubble, in aqueous solutions with unique properties caused by high internal pressure, small size and surface charge. [1] [2] Nanobubbles generally measure between 70-150 nanometers in size [3] [4] and less than 200 nanometers in diameter [5] [6] and are known for their longevity and stability, low buoyancy, negative surface charge, high surface area per volume, high internal pressure, and high gas transfer rates. [2] [7] [8] [9]

Contents

Nanobubbles can be formed by injecting any gas into a liquid. [10] [11] Because of their unique properties, they can interact with and affect physical, chemical, and biological processes. [12] They have been used in technology applications for industries such as wastewater, environmental engineering, agriculture, aquaculture, medicine and biomedicine, and others. [7] [13] [14]

Background

Nanobubbles are nanoscopic and generally too small to be observed using the naked eye or a standard microscope, but can be observed using backscattering of light using tools such as green laser pointers. [12] Stable nanobubbles in bulk about 30-400 millimeters in diameter were first reported in the British scientific journal Nature in 1982. [12] Scientists found them in deep water breaks using sonar observation. [12]

In 1994, a study by Phil Attard, John L. Parker, and Per M. Claesson further theorized about the existence of nano-sized bubbles, proposing that stable nanobubbles can form on the surface of both hydrophilic and hydrophobic surfaces depending on factors such as the level of saturation and surface tension. [15]

Nanobubbles can be generated using techniques such as solvent exchange, electrochemical reactions, and immersing a hydrophobic substrate into water while increasing or decreasing the water’s temperature. [13]

Nanobubbles and nanoparticles are often found together in certain circumstances, [16] but they differ in that nanoparticles have different properties such as density and resonance frequency. [17] [18]

The study of nanobubbles faces challenges in understanding their stability and the mechanisms behind their formation and dissolution. [19]

Properties

Nanobubbles possess several distinctive properties:

Usage

In aquaculture, nanobubbles have been used to improve fish health and growth rates [21] [22] [23] and to enhance oxidation. [24] [25] [26] Nanobubbles can improve health outcomes for fish by increasing the dissolved oxygen concentration of water, [21] reducing the concentration of bacteria and viruses in water, [22] and triggering the nonspecific defense system of species such as the Nile tilapia, improving survivability during bacterial infections. [27] The use of nanobubbles to increase dissolved oxygen levels can also promote plant growth and reduce the need for chemicals. [28] Nanobubbles have also been shown as effective in increasing the metabolism of living organisms including plants. [26] In regards to oxidation, nanobubbles are known for generating reactive oxygen species, giving them oxidative properties exceeding hydrogen peroxide. [25] Researchers have also proposed nanobubbles as a low-chemical alternative to chemical-based oxidants such as chlorine and ozone. [26] [27]

Related Research Articles

<span class="mw-page-title-main">Nanoparticle</span> Particle with size less than 100 nm

A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

<span class="mw-page-title-main">Photocatalysis</span> Acceleration of a photoreaction in the presence of a catalyst

In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a photocatalyst, the excited state of which "repeatedly interacts with the reaction partners forming reaction intermediates and regenerates itself after each cycle of such interactions." In many cases, the catalyst is a solid that upon irradiation with UV- or visible light generates electron–hole pairs that generate free radicals. Photocatalysts belong to three main groups; heterogeneous, homogeneous, and plasmonic antenna-reactor catalysts. The use of each catalysts depends on the preferred application and required catalysis reaction.

<span class="mw-page-title-main">Cerium(IV) oxide</span> Chemical compound

Cerium(IV) oxide, also known as ceric oxide, ceric dioxide, ceria, cerium oxide or cerium dioxide, is an oxide of the rare-earth metal cerium. It is a pale yellow-white powder with the chemical formula CeO2. It is an important commercial product and an intermediate in the purification of the element from the ores. The distinctive property of this material is its reversible conversion to a non-stoichiometric oxide.

Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles.

<span class="mw-page-title-main">Nanochemistry</span> Combination of chemistry and nanoscience

Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the bulk "down"'. Nanochemistry focuses on solid-state chemistry that emphasizes synthesis of building blocks that are dependent on size, surface, shape, and defect properties, rather than the actual production of matter. Atomic and molecular properties mainly deal with the degrees of freedom of atoms in the periodic table. However, nanochemistry introduced other degrees of freedom that controls material's behaviors by transformation into solutions. Nanoscale objects exhibit novel material properties, largely as a consequence of their finite small size. Several chemical modifications on nanometer-scaled structures approve size dependent effects.

<span class="mw-page-title-main">Nanofoam</span>

Nanofoams are a class of nanostructured, porous materials (foams) containing a significant population of pores with diameters less than 100 nm. Aerogels are one example of nanofoam.

Magnetic nanoparticles (MNPs) are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter, the larger microbeads are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling and cation sensors.

<span class="mw-page-title-main">Graphite oxide</span> Compound of carbon, oxygen, and hydrogen

Graphite oxide (GO), formerly called graphitic oxide or graphitic acid, is a compound of carbon, oxygen, and hydrogen in variable ratios, obtained by treating graphite with strong oxidizers and acids for resolving of extra metals. The maximally oxidized bulk product is a yellow solid with C:O ratio between 2.1 and 2.9, that retains the layer structure of graphite but with a much larger and irregular spacing.

<span class="mw-page-title-main">Electrocatalyst</span> Catalyst participating in electrochemical reactions

An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall half reaction. Major challenges in electrocatalysts focus on fuel cells.

<span class="mw-page-title-main">Nanodiamond</span> Extremely small diamonds used for their thermal, mechanical and optoelectronic properties

Nanodiamonds, or diamond nanoparticles, are diamonds with a size below 100 nanometers. They can be produced by impact events such as an explosion or meteoritic impacts. Because of their inexpensive, large-scale synthesis, potential for surface functionalization, and high biocompatibility, nanodiamonds are widely investigated as a potential material in biological and electronic applications and quantum engineering.

<span class="mw-page-title-main">Silver nanoparticle</span> Ultrafine particles of silver between 1 nm and 100 nm in size

Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common.

<span class="mw-page-title-main">Iron oxide nanoparticle</span>

Iron oxide nanoparticles are iron oxide particles with diameters between about 1 and 100 nanometers. The two main forms are composed of magnetite and its oxidized form maghemite. They have attracted extensive interest due to their superparamagnetic properties and their potential applications in many fields including molecular imaging.

<span class="mw-page-title-main">Nanocellulose</span> Material composed of nanosized cellulose fibrils

Nanocellulose is a term referring to nano-structured cellulose. This may be either cellulose nanocrystal, cellulose nanofibers (CNF) also called nanofibrillated cellulose (NFC), or bacterial nanocellulose, which refers to nano-structured cellulose produced by bacteria.

<span class="mw-page-title-main">Superhydrophobic coating</span> Water-repellant coating

A superhydrophobic coating is a thin surface layer that repels water. It is made from superhydrophobic (ultrahydrophobicity) materials. Droplets hitting this kind of coating can fully rebound. Generally speaking, superhydrophobic coatings are made from composite materials where one component provides the roughness and the other provides low surface energy.

<span class="mw-page-title-main">Cobalt oxide nanoparticle</span>

In materials and electric battery research, cobalt oxide nanoparticles usually refers to particles of cobalt(II,III) oxide Co
3
O
4
of nanometer size, with various shapes and crystal structures.

<span class="mw-page-title-main">Iron–platinum nanoparticle</span> Nanomaterial

Iron–platinum nanoparticles are 3D superlattices composed of an approximately equal atomic ratio of Fe and Pt. Under standard conditions, FePt NPs exist in the face-centered cubic phase but can change to a chemically ordered face-centered tetragonal phase as a result of thermal annealing. Currently there are many synthetic methods such as water-in-oil microemulsion, one-step thermal synthesis with metal precursors, and exchanged-coupled assembly for making FePt NPs. An important property of FePt NPs is their superparamagnetic character below 10 nanometers. The superparamagnetism of FePt NPs has made them attractive candidates to be used as MRI/CT scanning agents and a high-density recording material.

Micromotors are very small particles that can move themselves. The term is often used interchangeably with "nanomotor," despite the implicit size difference. These micromotors actually propel themselves in a specific direction autonomously when placed in a chemical solution. There are many different micromotor types operating under a host of mechanisms. Easily the most important examples are biological motors such as bacteria and any other self-propelled cells. Synthetically, researchers have exploited oxidation-reduction reactions to produce chemical gradients, local fluid flows, or streams of bubbles that then propel these micromotors through chemical media. Different stimuli, both external and internal can be used to control the behavior of these micromotors.

<span class="mw-page-title-main">Copper nanoparticle</span>

A copper nanoparticle is a copper based particle 1 to 100 nm in size. Like many other forms of nanoparticles, a copper nanoparticle can be prepared by natural processes or through chemical synthesis. These nanoparticles are of particular interest due to their historical application as coloring agents and the biomedical as well as the antimicrobial ones.

Praseodymium(III,IV) oxide is the inorganic compound with the formula Pr6O11 that is insoluble in water. It has a cubic fluorite structure. It is the most stable form of praseodymium oxide at ambient temperature and pressure.

Ozone micro/nano-bubble technology overcomes the limitation of ozone oxidation and mass transfer of ozone and its utilization. It improves the oxidation efficiency of ozone. Ozone micro/nano-bubble technology improves the disinfectant capacity of ozone.

References

  1. "Nanobubble - an overview". sciencedirect.com. Retrieved 2024-03-31.
  2. 1 2 Nirmalkar, N.; Pacek, A. W.; Barigou, M. (2018-09-18). "On the Existence and Stability of Bulk Nanobubbles". Langmuir. 34 (37): 10964–10973. doi:10.1021/acs.langmuir.8b01163. ISSN   0743-7463. PMID   30179016.
  3. Davey, Abby (2022-06-27). "Moleaer: Tiny bubble tech makes a big splash". H2O Global News. Retrieved 2024-03-31.
  4. Press, Aju (2022-10-27). "Fawoo Nanotech develops nanobubble generator to produce hydrogen in large quantities". Aju Press. Retrieved 2024-03-31.
  5. "Morphological and physiological responses". cabidigitallibrary.org.
  6. Shah, Rahul; Phatak, Niraj; Choudhary, Ashok; Gadewar, Sakshi; Ajazuddin; Bhattacharya, Sankha (2024). "Exploring the Theranostic Applications and Prospects of Nanobubbles". Current Pharmaceutical Biotechnology. 25. doi:10.2174/0113892010248189231010085827. PMID   37861011 . Retrieved 2024-03-31.
  7. 1 2 Lyu, Tao; Wu, Shubiao; Mortimer, Robert J. G.; Pan, Gang (2019-07-02). "Nanobubble Technology in Environmental Engineering: Revolutionization Potential and Challenges". Environmental Science & Technology. 53 (13): 7175–7176. Bibcode:2019EnST...53.7175L. doi:10.1021/acs.est.9b02821. ISSN   0013-936X. PMID   31180652.
  8. Azevedo, A.; Etchepare, R.; Calgaroto, S.; Rubio, J. (2016-08-01). "Aqueous dispersions of nanobubbles: Generation, properties and features". Minerals Engineering. 94: 29–37. Bibcode:2016MiEng..94...29A. doi:10.1016/j.mineng.2016.05.001. ISSN   0892-6875.
  9. Aluthgun Hewage, Shaini; Meegoda, Jay N. (2022). "Molecular dynamics simulation of bulk nanobubbles". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 650. doi: 10.1016/j.colsurfa.2022.129565 .
  10. Wine, Gaby. "Meet the Israeli scientist curing cancer with bubbles". thejc.com. Retrieved 2024-03-31.
  11. "The Proven Benefits of Nanobubbles". moleaer.com. Retrieved May 5, 2024.
  12. 1 2 3 4 "Nanobubbles (ultrafine bubbles)". water.lsbu.ac.uk. Retrieved 2024-03-31.
  13. 1 2 Foudas, Anastasios W.; Kosheleva, Ramonna I.; Favvas, Evangelos P.; Kostoglou, Margaritis; Mitropoulos, Athanasios C.; Kyzas, George Z. (2023-01-01). "Fundamentals and applications of nanobubbles: A review". Chemical Engineering Research and Design. 189: 64–86. Bibcode:2023CERD..189...64F. doi:10.1016/j.cherd.2022.11.013. ISSN   0263-8762.
  14. Mahasri, G.; Saskia, A.; Apandi, P. S.; Dewi, N. N.; Rozi; Usuman, N. M. (2018). "Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus)". IOP Conference Series: Earth and Environmental Science. 137 (1): 012046. Bibcode:2018E&ES..137a2046M. doi: 10.1088/1755-1315/137/1/012046 .
  15. Parker, John L.; Claesson, Per M.; Attard, Phil (August 1994). "Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces". The Journal of Physical Chemistry. 98 (34): 8468–8480. doi:10.1021/j100085a029. ISSN   0022-3654.
  16. Alheshibri, Muidh; Al Baroot, Abbad; Shui, Lingling; Zhang, Minmin (2021-10-01). "Nanobubbles and nanoparticles". Current Opinion in Colloid & Interface Science. 55: 101470. doi:10.1016/j.cocis.2021.101470. ISSN   1359-0294.
  17. Paknahad, Ali A.; Kerr, Liam; Wong, Daniel A.; Kolios, Michael C.; Tsai, Scott S. H. (2021). "Biomedical nanobubbles and opportunities for microfluidics". RSC Advances. 11 (52): 32750–32774. Bibcode:2021RSCAd..1132750P. doi:10.1039/d1ra04890b. ISSN   2046-2069. PMC   9042222 . PMID   35493576.
  18. Alheshibri, Muidh; Craig, Vincent S. J. (2018-09-27). "Differentiating between Nanoparticles and Nanobubbles by Evaluation of the Compressibility and Density of Nanoparticles". The Journal of Physical Chemistry C. 122 (38): 21998–22007. doi:10.1021/acs.jpcc.8b07174. ISSN   1932-7447.
  19. 1 2 3 4 Wu, Jiajia; Zhang, Kejia; Cen, Cheng; Wu, Xiaogang; Mao, Ruyin; Zheng, Yingying (2021-06-28). "Role of bulk nanobubbles in removing organic pollutants in wastewater treatment". AMB Express. 11 (1): 96. doi: 10.1186/s13568-021-01254-0 . ISSN   2191-0855. PMC   8239109 . PMID   34184137.
  20. Nazari, Sabereh; Hassanzadeh, Ahmad; He, Yaqun; Khoshdast, Hamid; Kowalczuk, Przemyslaw B. (April 2022). "Recent Developments in Generation, Detection and Application of Nanobubbles in Flotation". Minerals. 12 (4): 462. Bibcode:2022Mine...12..462N. doi: 10.3390/min12040462 . hdl: 11250/3048662 . ISSN   2075-163X.
  21. 1 2 Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki (2013-06-05). "Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice". PLOS ONE. 8 (6): e65339. Bibcode:2013PLoSO...865339E. doi: 10.1371/journal.pone.0065339 . ISSN   1932-6203. PMC   3673973 . PMID   23755221.
  22. 1 2 Dien, Le Thanh; Linh, Nguyen Vu; Mai, Thao Thu; Senapin, Saengchan; St-Hilaire, Sophie; Rodkhum, Channarong; Dong, Ha Thanh (2022-03-30). "Impacts of oxygen and ozone nanobubbles on bacteriophage in aquaculture system". Aquaculture. 551: 737894. Bibcode:2022Aquac.55137894D. doi:10.1016/j.aquaculture.2022.737894. ISSN   0044-8486.
  23. Ramos, Royer Pizarro; Yupanqui, Walter Wilfredo Ochoa; Tineo-Vargas, Viky Soledad; Tello-Ataucusi, Dina Soledad; Pariona-Garay, Lino David; Ochoa-Rodríguez, Diego Wilfredo; Castro-Carranza, Tomás Segundo; Tenorio-Bautista, Saturnino Martín (2022-03-15). "Efecto de la oxigenación con micronanoburbujas en la calidad de agua y producción de "truchas" Oncorhynchus mykiss". Llamkasun (in Spanish). 3 (1): 66–73. doi:10.47797/llamkasun.v3i1.84. ISSN   2709-2275.
  24. Atkinson, Ariel J.; Apul, Onur G.; Schneider, Orren; Garcia-Segura, Sergi; Westerhoff, Paul (2019-05-21). "Nanobubble Technologies Offer Opportunities To Improve Water Treatment". Accounts of Chemical Research. 52 (5): 1196–1205. doi:10.1021/acs.accounts.8b00606. ISSN   0001-4842. PMID   30958672.
  25. 1 2 Liu, Shu; Oshita, S.; Makino, Y.; Micro, th (2014). "Reactive oxygen species induced by water containing nano-bubbles and its role in the improvement of barley seed germination". S2CID   55453522.{{cite journal}}: Cite journal requires |journal= (help)
  26. 1 2 3 Liu, Shu; Oshita, Seiichi; Makino, Yoshio; Wang, Qunhui; Kawagoe, Yoshinori; Uchida, Tsutomu (2016-03-07). "Oxidative Capacity of Nanobubbles and Its Effect on Seed Germination". ACS Sustainable Chemistry & Engineering. 4 (3): 1347–1353. doi:10.1021/acssuschemeng.5b01368. ISSN   2168-0485.
  27. 1 2 Linh, Nguyen Vu; Dien, Le Thanh; Panphut, Wattana; Thapinta, Anat; Senapin, Saengchan; St-Hilaire, Sophie; Rodkhum, Channarong; Dong, Ha Thanh (2021-05-01). "Ozone nanobubble modulates the innate defense system of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae". Fish & Shellfish Immunology. 112: 64–73. Bibcode:2021FSI...112...64L. doi:10.1016/j.fsi.2021.02.015. ISSN   1050-4648. PMID   33667674.
  28. "Nanobubble systems | Applications in Horticulture & Hydroponics". Nanobubbles. Retrieved 2024-03-31.