Nanobubble

Last updated

A nanobubble is a small sub-micrometer gas-containing cavity, or bubble, in aqueous solutions with unique properties caused by high internal pressure, small size and surface charge. [1] [2] [3] [4] Nanobubbles generally measure between 70-150 nanometers in size [5] [6] and less than 200 nanometers in diameter [7] [8] and are known for their longevity and stability, low buoyancy, negative surface charge, high surface area per volume, high internal pressure, and high gas transfer rates. [4] [9] [10] [11]

Contents

Nanobubbles can be formed by injecting any gas into a liquid. [12] [13] Because of their unique properties, they can interact with and affect physical, chemical, and biological processes. [14] They have been used in technology applications for industries such as wastewater, environmental engineering, agriculture, aquaculture, medicine and biomedicine, and others. [9] [15] [16]

Background

Nanobubbles are nanoscopic and generally too small to be observed using the naked eye or a standard microscope, but can be observed using backscattering of light using tools such as green laser pointers. [14] Stable nanobubbles in bulk about 30-400 nanometers in diameter were first reported in the British scientific journal Nature in 1982. [14] Scientists found them in deep water breaks using sonar observation. [14]

In 1994, a study by Phil Attard, John L. Parker, and Per M. Claesson further theorized about the existence of nano-sized bubbles, proposing that stable nanobubbles can form on the surface of both hydrophilic and hydrophobic surfaces depending on factors such as the level of saturation and surface tension. [17]

Nanobubbles can be generated using techniques such as solvent exchange, electrochemical reactions, and immersing a hydrophobic substrate into water while increasing or decreasing the water’s temperature. [15]

Nanobubbles and nanoparticles are often found together in certain circumstances, [18] but they differ in that nanoparticles have different properties such as density and resonance frequency. [19] [20]

The study of nanobubbles faces challenges in understanding their stability and the mechanisms behind their formation and dissolution. [21]

Properties

Nanobubbles possess several distinctive properties:

Usage

In aquaculture, nanobubbles have been used to improve fish health and growth rates [23] [24] [25] and to enhance oxidation. [26] [27] [28] Nanobubbles can improve health outcomes for fish by increasing the dissolved oxygen concentration of water, [23] reducing the concentration of bacteria and viruses in water, [24] and triggering the nonspecific defense system of species such as the Nile tilapia, improving survivability during bacterial infections. [29] The use of nanobubbles to increase dissolved oxygen levels can also promote plant growth and reduce the need for chemicals. [30] Nanobubbles have also been shown as effective in increasing the metabolism of living organisms including plants. [28] In regards to oxidation, nanobubbles are known for generating reactive oxygen species, giving them oxidative properties exceeding hydrogen peroxide. [27] Researchers have also proposed nanobubbles as a low-chemical alternative to chemical-based oxidants such as chlorine and ozone. [28] [29]

References

  1. Svetovoy, Vitaly B. (April 2021). "Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles". Current Opinion in Colloid & Interface Science. 52 101423. arXiv: 2102.03126 . doi:10.1016/j.cocis.2021.101423.
  2. Yusoff, A.H.M.; Salimi, M.N. (2018). "Superparamagnetic nanoparticles for drug delivery". Applications of Nanocomposite Materials in Drug Delivery. pp. 843–859. doi:10.1016/B978-0-12-813741-3.00037-6. ISBN   978-0-12-813741-3.
  3. Michailidi, Elisavet D.; Bomis, George; Varoutoglou, Athanasios; Efthimiadou, Eleni K.; Mitropoulos, Athanasios C.; Favvas, Evangelos P. (2019). "Fundamentals and applications of nanobubbles". Advanced Low-Cost Separation Techniques in Interface Science. Interface Science and Technology. Vol. 30. pp. 69–99. doi:10.1016/B978-0-12-814178-6.00004-2. ISBN   978-0-12-814178-6.
  4. 1 2 Nirmalkar, N.; Pacek, A. W.; Barigou, M. (18 September 2018). "On the Existence and Stability of Bulk Nanobubbles". Langmuir. 34 (37): 10964–10973. doi:10.1021/acs.langmuir.8b01163. PMID   30179016.
  5. Davey, Abby (2022-06-27). "Moleaer: Tiny bubble tech makes a big splash". H2O Global News. Retrieved 2024-03-31.
  6. Chang-won, Lim (27 October 2022). "Fawoo Nanotech develops nanobubble generator to produce hydrogen in large quantities". AJU PRESS.
  7. Hussain, Afzal; Ali, Shafaqat; Rizwan, Muhammad; Zia-Ur-Rehman, Muhammad; Yasmeen, Tahira; Hayat, Malik Tahir; Hussain, Iqbal; Ali, Qasim; Hussain, Syed Makhdoom (2019). "Morphological and Physiological Responses of Plants to Cadmium Toxicity". Cadmium Toxicity and Tolerance in Plants. pp. 47–72. doi:10.1016/B978-0-12-814864-8.00003-6. ISBN   978-0-12-814864-8.
  8. Shah, Rahul; Phatak, Niraj; Choudhary, Ashok; Gadewar, Sakshi; Bhattacharya, Sankha (July 2024). "Exploring the Theranostic Applications and Prospects of Nanobubbles". Current Pharmaceutical Biotechnology. 25 (9): 1167–1181. doi:10.2174/0113892010248189231010085827. PMID   37861011.
  9. 1 2 Lyu, Tao; Wu, Shubiao; Mortimer, Robert J. G.; Pan, Gang (2 July 2019). "Nanobubble Technology in Environmental Engineering: Revolutionization Potential and Challenges". Environmental Science & Technology. 53 (13): 7175–7176. Bibcode:2019EnST...53.7175L. doi:10.1021/acs.est.9b02821. PMID   31180652.
  10. Azevedo, A.; Etchepare, R.; Calgaroto, S.; Rubio, J. (August 2016). "Aqueous dispersions of nanobubbles: Generation, properties and features". Minerals Engineering. 94: 29–37. Bibcode:2016MiEng..94...29A. doi:10.1016/j.mineng.2016.05.001.
  11. Aluthgun Hewage, Shaini; Meegoda, Jay N. (2022). "Molecular dynamics simulation of bulk nanobubbles". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 650 129565. doi: 10.1016/j.colsurfa.2022.129565 .
  12. Wine, Gaby. "Meet the Israeli scientist curing cancer with bubbles". thejc.com. Retrieved 2024-03-31.
  13. "The Proven Benefits of Nanobubbles". moleaer.com. Retrieved May 5, 2024.
  14. 1 2 3 4 "Nanobubbles (ultrafine bubbles)". water.lsbu.ac.uk. Retrieved 2024-03-31.
  15. 1 2 Foudas, Anastasios W.; Kosheleva, Ramonna I.; Favvas, Evangelos P.; Kostoglou, Margaritis; Mitropoulos, Athanasios C.; Kyzas, George Z. (January 2023). "Fundamentals and applications of nanobubbles: A review". Chemical Engineering Research and Design. 189: 64–86. Bibcode:2023CERD..189...64F. doi:10.1016/j.cherd.2022.11.013.
  16. Mahasri, G.; Saskia, A.; Apandi, P. S.; Dewi, N. N.; Rozi; Usuman, N. M. (2018). "Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus)". IOP Conference Series: Earth and Environmental Science. 137 (1): 012046. Bibcode:2018E&ES..137a2046M. doi: 10.1088/1755-1315/137/1/012046 .
  17. Parker, John L.; Claesson, Per M.; Attard, Phil (August 1994). "Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces". The Journal of Physical Chemistry. 98 (34): 8468–8480. doi:10.1021/j100085a029.
  18. Alheshibri, Muidh; Al Baroot, Abbad; Shui, Lingling; Zhang, Minmin (October 2021). "Nanobubbles and nanoparticles". Current Opinion in Colloid & Interface Science. 55 101470. doi:10.1016/j.cocis.2021.101470.
  19. Paknahad, Ali A.; Kerr, Liam; Wong, Daniel A.; Kolios, Michael C.; Tsai, Scott S. H. (2021). "Biomedical nanobubbles and opportunities for microfluidics". RSC Advances. 11 (52): 32750–32774. Bibcode:2021RSCAd..1132750P. doi:10.1039/d1ra04890b. ISSN   2046-2069. PMC   9042222 . PMID   35493576.
  20. Alheshibri, Muidh; Craig, Vincent S. J. (27 September 2018). "Differentiating between Nanoparticles and Nanobubbles by Evaluation of the Compressibility and Density of Nanoparticles". The Journal of Physical Chemistry C. 122 (38): 21998–22007. doi:10.1021/acs.jpcc.8b07174.
  21. 1 2 3 4 Wu, Jiajia; Zhang, Kejia; Cen, Cheng; Wu, Xiaogang; Mao, Ruyin; Zheng, Yingying (2021-06-28). "Role of bulk nanobubbles in removing organic pollutants in wastewater treatment". AMB Express. 11 (1): 96. doi: 10.1186/s13568-021-01254-0 . ISSN   2191-0855. PMC   8239109 . PMID   34184137.
  22. Nazari, Sabereh; Hassanzadeh, Ahmad; He, Yaqun; Khoshdast, Hamid; Kowalczuk, Przemyslaw B. (April 2022). "Recent Developments in Generation, Detection and Application of Nanobubbles in Flotation". Minerals. 12 (4): 462. Bibcode:2022Mine...12..462N. doi: 10.3390/min12040462 . hdl: 11250/3048662 . ISSN   2075-163X.
  23. 1 2 Ebina, Kosuke; Shi, Kenrin; Hirao, Makoto; Hashimoto, Jun; Kawato, Yoshitaka; Kaneshiro, Shoichi; Morimoto, Tokimitsu; Koizumi, Kota; Yoshikawa, Hideki (5 June 2013). "Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice". PLOS ONE. 8 (6): e65339. Bibcode:2013PLoSO...865339E. doi: 10.1371/journal.pone.0065339 . ISSN   1932-6203. PMC   3673973 . PMID   23755221.
  24. 1 2 Dien, Le Thanh; Linh, Nguyen Vu; Mai, Thao Thu; Senapin, Saengchan; St-Hilaire, Sophie; Rodkhum, Channarong; Dong, Ha Thanh (March 2022). "Impacts of oxygen and ozone nanobubbles on bacteriophage in aquaculture system". Aquaculture. 551 737894. Bibcode:2022Aquac.55137894D. doi:10.1016/j.aquaculture.2022.737894.
  25. Pizarro Ramos, Royer; Ochoa Yupanqui, Walter Wilfredo; Tineo-Vargas, Viky Soledad; Tello-Ataucusi, Dina Soledad; Pariona-Garay, Lino David; Ochoa-Rodríguez, Diego Wilfredo; Castro-Carranza, Tomás Segundo; Tenorio-Bautista, Saturnino Martín (15 March 2022). "Efecto de la oxigenación con micronanoburbujas en la calidad de agua y producción de 'truchas' Oncorhynchus mykiss". Llamkasun. 3 (1): 66–73. doi: 10.47797/llamkasun.v3i1.84 .
  26. Atkinson, Ariel J.; Apul, Onur G.; Schneider, Orren; Garcia-Segura, Sergi; Westerhoff, Paul (21 May 2019). "Nanobubble Technologies Offer Opportunities To Improve Water Treatment". Accounts of Chemical Research. 52 (5): 1196–1205. doi:10.1021/acs.accounts.8b00606. PMID   30958672.
  27. 1 2 Liu, S.; Oshita, S.; Makino, Y. (2014). Reactive oxygen species induced by water containing nano-bubbles and its role in the improvement of barley seed germination. 4th Micro and Nano Flows Conference. Brunel University London. ISBN   978-1-908549-16-7.
  28. 1 2 3 Liu, Shu; Oshita, Seiichi; Makino, Yoshio; Wang, Qunhui; Kawagoe, Yoshinori; Uchida, Tsutomu (7 March 2016). "Oxidative Capacity of Nanobubbles and Its Effect on Seed Germination". ACS Sustainable Chemistry & Engineering. 4 (3): 1347–1353. Bibcode:2016ASCE....4.1347L. doi:10.1021/acssuschemeng.5b01368.
  29. 1 2 Linh, Nguyen Vu; Dien, Le Thanh; Panphut, Wattana; Thapinta, Anat; Senapin, Saengchan; St-Hilaire, Sophie; Rodkhum, Channarong; Dong, Ha Thanh (May 2021). "Ozone nanobubble modulates the innate defense system of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae". Fish & Shellfish Immunology. 112: 64–73. Bibcode:2021FSI...112...64L. doi:10.1016/j.fsi.2021.02.015. PMID   33667674.
  30. "Nanobubble systems | Applications in Horticulture & Hydroponics". Nanobubbles. Retrieved 2024-03-31.