Spirit level

Last updated
A tubular spirit level DetalleNivelDeBurbuja.jpg
A tubular spirit level
A bull's eye spirit level mounted in a camera tripod Spirit Level 5E5W0843.jpg
A bull's eye spirit level mounted in a camera tripod

A spirit level, bubble level, or simply a level, is an instrument designed to indicate whether a surface is horizontal (level) or vertical (plumb). Two basic designs exist: tubular (or linear) and bull's eye (or circular). Different types of spirit levels may be used by carpenters, stonemasons, bricklayers, other building trades workers, surveyors, millwrights and other metalworkers, and in some photographic or videographic work.

Contents

History

The history of the spirit level was discussed in brief in an 1887 article appearing in Scientific American . [1] Melchisédech Thévenot, a French scientist, invented the instrument some time before February 2, 1661.[ citation needed ] This date can be established from Thevenot's correspondence with scientist Christiaan Huygens. Within a year of this date the inventor circulated details of his invention to others, including Robert Hooke in London and Vincenzo Viviani in Florence.[ citation needed ] It is occasionally argued that these "bubble levels" did not come into widespread use until the beginning of the 18th century, the earliest surviving examples being from that time, but Adrien Auzout had recommended that the Académie Royale des Sciences take "levels of the Thevenot type" on its expedition to Madagascar in 1666.[ citation needed ] It is very likely that these levels were in use in France and elsewhere long before the turn of the century.[ citation needed ]

The Fell All-Way precision level, one of the first successful American made bull's eye levels for machine tool use, was invented by William B. Fell of Rockford, Illinois in 1939. [2] The device was unique in that it could be placed on a machine bed and show tilt on the x-y axes simultaneously, eliminating the need to rotate the level 90 degrees.[ citation needed ] The level was so accurate it was restricted from export during World War II.[ citation needed ] The device set a new standard of .0005 inches per foot resolution (five ten thousands per foot or five arc seconds tilt).[ citation needed ] Production of the level stopped around 1970, and was restarted in the 1980s by Thomas Butler Technology, also of Rockford, Illinois, but finally ended in the mid-1990s. However, there are still hundreds of the devices in existence.[ citation needed ]

Design and construction

Machinists precision level 5Sec3Tenths.JPG
Machinists precision level

Early tubular spirit levels had very slightly curved glass vials with constant inner diameter at each viewing point. These vials are filled, incompletely, with a liquid – usually a colored spirit or alcohol – leaving a bubble in the tube. They have a slight upward curve, so that the bubble naturally rests in the center, the highest point. At slight inclinations the bubble travels away from the marked center position. Where a spirit level must also be usable upside-down or on its side, the curved constant-diameter tube is replaced by an uncurved barrel-shaped tube with a slightly larger diameter in its middle.

Alcohols such as ethanol are often used rather than water. Alcohols have low viscosity and surface tension, which allows the bubble to travel the tube quickly and settle accurately with minimal interference from the glass surface. Alcohols also have a much wider liquid temperature range, and will not break the vial as water could due to ice expansion. A colorant such as fluorescein, typically yellow or green, may be added to increase the visibility of the bubble.

A variant of the linear spirit level is the bull's eye level: a circular, flat-bottomed device with the liquid under a slightly convex glass face with a circle at the center. It serves to level a surface across a plane, while the tubular level only does so in the direction of the tube.

Calibration

Level adjustment Wasserwaage-Karl Dahm.jpg
Level adjustment

To check the accuracy of a carpenter's type level, a perfectly horizontal surface is not needed. The level is placed on a flat and roughly level surface and the reading on the bubble tube is noted. This reading indicates to what extent the surface is parallel to the horizontal plane, according to the level, which at this stage is of unknown accuracy. The spirit level is then rotated through 180 degrees in the horizontal plane, and another reading is noted. If the level is accurate, it will indicate the same orientation with respect to the horizontal plane. A difference implies that the level is inaccurate.

Adjustment of the spirit level is performed by successively rotating the level and moving the bubble tube within its housing to take up roughly half of the discrepancy, until the magnitude of the reading remains constant when the level is flipped.

A similar procedure is applied to more sophisticated instruments such as a surveyor's optical level or a theodolite and is a matter of course each time the instrument is set up. In this latter case, the plane of rotation of the instrument is levelled, along with the spirit level. This is done in two horizontal perpendicular directions.

Sensitivity

Sensitivity is an important specification for a spirit level, as the device's accuracy depends on its sensitivity. The sensitivity of a level is given as the change of angle or gradient required to move the bubble by unit distance. If the bubble housing has graduated divisions, then the sensitivity is the angle or gradient change that moves the bubble by one of these divisions. 2 mm (0.079 in) is the usual spacing for graduations; on a surveyor's level, the bubble will move 2 mm (0.079 in) when the vial is tilted about 0.005 degree. For a precision machinist level with 2 mm (0.079 in) divisions, when the vial is tilted one division, the level will change 0.04 mm (0.0016 in) one meter from the pivot point, referred to by machinists as 5 tenths per foot. This terminology is unique to machinists and indicates a length of 5 tenths of 1 thousandth of an inch. [3] [4]

Types

Level tool being used to establish horizontality. US Navy 080606-N-9623R-414 Builder 2nd Class Kathryn Henderson, assigned to Naval Mobile Construction Battalion (NMCB) 3, uses a horizontal level and tape measure.jpg
Level tool being used to establish horizontality.

There are different types of spirit levels for different uses:

A spirit level is usually found on the head of combination squares.

Carpenter's level

Carpenter's bulls-eye level ButlerTypeC SpecialLowSensitivity 1995.JPG
Carpenter's bulls-eye level

A traditional carpenter's spirit level looks like a short plank of wood and often has a wide body to ensure stability, and that the surface is being measured correctly. In the middle of the spirit level is a small window where the bubble and the tube is mounted. Two notches (or rings) designate where the bubble should be if the surface is level. Often an indicator for a 45 degree inclination is included.[ citation needed ]

Line level

Measuring elevation with a line level and measuring tape. Measuring elevation with a line level. Historical archaeology at the old Champoeg townsite, Champoeg, Oregon (USA) 1973 (2149089991) (cropped).jpg
Measuring elevation with a line level and measuring tape.

A line level is a level designed to hang on a builder's string line. The body of the level incorporates small hooks to allow it to attach and hang from the string line. The body is lightweight, so as not to weigh down the string line, it is also small in size as the string line in effect becomes the body; when the level is hung in the center of the string, each 'leg' of the string line extends the level's plane.[ citation needed ]

Engineer's precision levels

An engineer's precision level permits leveling items to greater accuracy than a plain spirit level. They are used to level the foundations, or beds of machines to ensure the machine can output workpieces to the accuracy pre-built in the machine.[ citation needed ]

Surveyor's leveling instrument

Modern automatic level in use on a construction site Us land survey officer.jpg
Modern automatic level in use on a construction site

Combining a spirit level with an optical telescope results in a tilting level or dumpy level . [5] These leveling instruments as used in surveying to measure height differences over larger distances. A surveyor's leveling instrument has a spirit level mounted on a telescope (perhaps 30 power) with cross-hairs, itself mounted on a tripod. The observer reads height values off two graduated vertical rods, one 'behind' and one 'in front', to obtain the height difference between the ground points on which the rods are resting. Starting from a point with a known elevation and going cross country (successive points being perhaps 100 meters (328 ft) apart) height differences can be measured cumulatively over long distances and elevations can be calculated. Precise levelling is supposed to give the difference in elevation between two points one kilometer (0.62 miles) apart correct to within a few millimeters.[ citation needed ]

Alternatives

Alternatives include:

Today level tools are available in most smartphones by using the device's accelerometer. These mobile apps come with various features and easy designs. [6] Also new web standards allow websites to get orientation of devices.

Digital spirit levels are increasingly common in replacing conventional spirit levels, particularly in civil engineering applications such as traditional building construction and steel structure erection, for on-site angle alignment and leveling tasks. The industry practitioners often refer to those levelling tools as a "construction level", "heavy duty level", "inclinometer", or "protractor". These modern electronic levels are capable of displaying precise numeric angles within 360° with 0.1° to 0.05° accuracy, can be read from a distance with clarity, and are affordably priced due to mass adoption. They provide features that traditional levels are unable to match. Typically, these features enable steel beam frames under construction to be precisely aligned and levelled to the required orientation, which is vital to ensure the stability, strength and rigidity of steel structures on sites. Digital levels, embedded with angular MEMS technology effectively improve productivity and quality of many modern civil structures. Some recent models feature waterproof IP65 and impact resistance features for harsh working environments.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Surveying</span> Science of determining the positions of points and the distances and angles between them

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designed positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

<span class="mw-page-title-main">Theodolite</span> Optical surveying instrument

A theodolite is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching.

<span class="mw-page-title-main">Inclinometer</span> Instrument used to measure the inclination of a surface relative to local gravity

An inclinometer or clinometer is an instrument used for measuring angles of slope, elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines and declines using three different units of measure: degrees, percentage points, and topos. The astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance.

<span class="mw-page-title-main">Levelling</span> Surveying technique

Levelling or leveling is a branch of surveying, the object of which is to establish or verify or measure the height of specified points relative to a datum. It is widely used in geodesy and cartography to measure vertical position with respect to a vertical datum, and in construction to measure height differences of construction artifacts.

<span class="mw-page-title-main">Tiltmeter</span> Inclinometer for measuring small tilts

A tiltmeter is a sensitive inclinometer designed to measure very small changes from the vertical level, either on the ground or in structures. Tiltmeters are used extensively for monitoring volcanoes, the response of dams to filling, the small movements of potential landslides, the orientation and volume of hydraulic fractures, and the response of structures to various influences such as loading and foundation settlement. Tiltmeters may be purely mechanical or incorporate vibrating-wire or electrolytic sensors for electronic measurement. A sensitive instrument can detect changes of as little as one arc second.

<span class="mw-page-title-main">Engineer's spirit level</span>

An engineer's spirit level is generally used to level machines, although they may also be used to level large workpieces on machines such as planers. Using gravity as a reference and checking a machine's axis of travel at several points, the level is used to ensure the machine's axis is straight. A perfectly level machine does not actually need to be achieved, unless the particular manufacturing process requires it. Spirit levels are also used in building construction by carpenters and masons.

<span class="mw-page-title-main">Tribrach (instrument)</span> Adjustable mounting plate between a surveying instrument and its tripod

A tribrach is an attachment plate used to attach a surveying instrument, for example a theodolite, total station, GNSS antenna or target to a tripod. A tribrach allows the survey instrument to be repeatedly placed in the same position over a surveying marker point with sub-millimetre precision, by loosening and re-tightening a lock to adjust the instrument base in a horizontal plane.

<span class="mw-page-title-main">Level (optical instrument)</span> Optical instrument to verify horizontal points

A level is an optical instrument used to establish or verify points in the same horizontal plane in a process known as levelling. It is used in conjunction with a levelling staff to establish the relative height or levels of objects or marks. It is widely used in surveying and construction to measure height differences and to transfer, measure, and set heights of known objects or marks.

<span class="mw-page-title-main">Plumb bob</span> Weighted line used as a vertical reference

A plumb bob, plumb bob level, or plummet, is a weight, usually with a pointed tip on the bottom, suspended from a string and used as a vertical direction as a reference line, or plumb-line. It is a precursor to the spirit level and used to establish a vertical datum. It is typically made of stone, wood, or lead, but can also be made of other metals. If it is used for decoration, it may be made of bone or ivory.

<span class="mw-page-title-main">Meridian circle</span> Astronomical instrument for timing of the passage of stars

The meridian circle is an instrument for timing of the passage of stars across the local meridian, an event known as a culmination, while at the same time measuring their angular distance from the nadir. These are special purpose telescopes mounted so as to allow pointing only in the meridian, the great circle through the north point of the horizon, the north celestial pole, the zenith, the south point of the horizon, the south celestial pole, and the nadir. Meridian telescopes rely on the rotation of the sky to bring objects into their field of view and are mounted on a fixed, horizontal, east–west axis.

<span class="mw-page-title-main">Brunton compass</span> Precision compass made by Brunton, Inc. of Riverton, Wyoming

A Brunton compass, properly known as the Brunton Pocket Transit, is a precision compass made by Brunton, Inc. of Riverton, Wyoming. The instrument was patented in 1894 by Canadian-born geologist David W. Brunton. Unlike most modern compasses, the Brunton Pocket Transit utilizes magnetic induction damping rather than fluid to damp needle oscillation. Although Brunton, Inc. makes many other types of magnetic compasses, the Brunton Pocket Transit is a specialized instrument used widely by those needing to make accurate navigational and slope-angle measurements in the field. Users are primarily geologists, but archaeologists, environmental engineers, mining engineers and surveyors also make use of the Brunton's capabilities. The United States Army has adopted the Pocket Transit as the M2 Compass for use by crew-served artillery.

<span class="mw-page-title-main">Bull's eye level</span>

A bull's eye level is a type of spirit level that allows for the leveling of planes in two dimensions — both the 'pitch' and 'roll' in nautical terms. Standard tubular levels only consider one dimension. Bull's eye levels are used primarily by carpenters in construction, but can also be found as features of compasses or other devices that need to be kept from tipping in certain directions. Small bull's eye levels are also found incorporated into tripods.

<span class="mw-page-title-main">Cave survey</span>

A cave survey is a map of all or part of a cave system, which may be produced to meet differing standards of accuracy depending on the cave conditions and equipment available underground. Cave surveying and cartography, i.e. the creation of an accurate, detailed map, is one of the most common technical activities undertaken within a cave and is a fundamental part of speleology. Surveys can be used to compare caves to each other by length, depth and volume, may reveal clues on speleogenesis, provide a spatial reference for other areas of scientific study and assist visitors with route-finding.

A plane table is a device used in surveying site mapping, exploration mapping, coastal navigation mapping, and related disciplines to provide a solid and level surface on which to make field drawings, charts and maps. The early use of the name plain table reflected its simplicity and plainness rather than its flatness. "Plane" refers to the table being both flat and levelled (horizontal).

A graduation is a marking used to indicate points on a visual scale, which can be present on a container, a measuring device, or the axes of a line plot, usually one of many along a line or curve, each in the form of short line segments perpendicular to the line or curve. Often, some of these line segments are longer and marked with a numeral, such as every fifth or tenth graduation. The scale itself can be linear or nonlinear.

<span class="mw-page-title-main">Topographic Abney level</span> Surveying instrument

An Abney level and clinometer is an instrument used in surveying which consists of a fixed sighting tube, a movable spirit level that is connected to a pointing arm, and a protractor scale. An internal mirror allows the user to see the bubble in the level while sighting a distant target. It can be used as a hand-held instrument or mounted on a Jacob's staff for more precise measurement, and it is small enough to carry in a coat pocket.

<span class="mw-page-title-main">Turn and slip indicator</span> Aircraft flight instrument

In aviation, the turn and slip indicator and the turn coordinator (TC) variant are essentially two aircraft flight instruments in one device. One indicates the rate of turn, or the rate of change in the aircraft's heading; the other part indicates whether the aircraft is in coordinated flight, showing the slip or skid of the turn. The slip indicator is actually an inclinometer that at rest displays the angle of the aircraft's transverse axis with respect to horizontal, and in motion displays this angle as modified by the acceleration of the aircraft. The most commonly used units are degrees per second (deg/s) or minutes per turn (min/tr).

In astronomy, geography, and related sciences and contexts, a direction or plane passing by a given point is said to be vertical if it contains the local gravity direction at that point.

This is a glossary of levelling terms. Levelling is a surveying method used to find relative height, one use of which is to ensure ground is level during construction, for example, when excavating to prepare for laying a foundation for a house.

<span class="mw-page-title-main">Tilt detector</span>

A tilt detector or tilt indicator is a device which indicates whether a tilt has occurred. Tilt detectors can be used on shipments of tilt sensible items to indicate whether a potentially damaging tilt have occurred. They are also used in the field of electronics or automotive on some models to detect if a change in vehicle inclination has occurred.

References

  1. Scientific American. Munn & Company. 1887-08-27. p. 136.
  2. William B Fell (1940-08-01). "Machinist's precision level (US2316777A)". Google Patents . Retrieved 2 August 2018.
  3. "Beginner's Guide to Reading Machine Shop Numbers & Values". 24 November 2021.
  4. "Sensitivity & Accuracy of Spirit Level Vials". 13 December 2022.
  5. "Equipment Database Menu". Sli.unimelb.edu.au. 1998-10-19. Archived from the original on July 10, 2009. Retrieved 2009-07-29.
  6. "How do I access the spirit level?". iPhoneFAQ. Retrieved 2 August 2018.