Compass (drawing tool)

Last updated
A beam compass and a regular compass Zirkel.jpg
A beam compass and a regular compass
Using a compass IMB DQj3Fs.gif
Using a compass
A compass with an extension accessory for larger circles Cyrkiel RB1.jpg
A compass with an extension accessory for larger circles
A bow compass capable of drawing the smallest possible circles Rotring S0214750 with Rapidograph 0.5 mm drawing 1.5-15 mm circles.jpg
A bow compass capable of drawing the smallest possible circles

A compass, also commonly known as a pair of compasses, is a technical drawing instrument that can be used for inscribing circles or arcs. As dividers, it can also be used as a tool to mark out distances, in particular, on maps. Compasses can be used for mathematics, drafting, navigation and other purposes.

Contents

Prior to computerization, compasses and other tools for manual drafting were often packaged as a set [1] with interchangeable parts. By the mid-twentieth century, circle templates supplemented the use of compasses.[ citation needed ] Today those facilities are more often provided by computer-aided design programs, so the physical tools serve mainly a didactic purpose in teaching geometry, technical drawing, etc.

Construction and parts

Compasses are usually made of metal or plastic, and consist of two "legs" connected by a hinge which can be adjusted to allow changing of the radius of the circle drawn. Typically one leg has a spike at its end for anchoring, and the other leg holds a drawing tool, such as a pencil, a short length of just pencil lead or sometimes a pen.

Handle

The handle, a small knurled rod above the hinge, is usually about half an inch long. Users can grip it between their pointer finger and thumb.

Legs

There are two types of leg in a pair of compasses: the straight or the steady leg and the adjustable one. Each has a separate purpose; the steady leg serves as the basis or support for the needle point, while the adjustable leg can be altered in order to draw different sizes of circles.

Hinge

The screw through the hinge holds the two legs in position. The hinge can be adjusted, depending on desired stiffness; the tighter the hinge-screw, the more accurate the compass's performance. The better quality compass, made of plated metal, is able to be finely adjusted via a small, serrated wheel usually set between the legs (see the "using a compass" animation shown above) and it has a (dangerously powerful) spring encompassing the hinge. This sort of compass is often known as a "pair of Spring-Bow Compasses".

Needle point

The needle point is located on the steady leg, and serves as the center point of the circle that is about to be drawn.

Pencil lead

The pencil lead draws the circle on a particular paper or material. Alternatively, an ink nib or attachment with a technical pen may be used. The better quality compass, made of metal, has its piece of pencil lead specially sharpened to a "chisel edge" shape, rather than to a point.

Adjusting nut

This holds the pencil lead or pen in place.

Uses

Circles can be made by pushing one leg of the compasses into the paper with the spike, putting the pencil on the paper, and moving the pencil around while keeping the legs at the same angle. Some people who find this action difficult often hold the compasses still and move the paper round instead. The radius of the intended circle can be changed by adjusting the initial angle between the two legs.

Distances can be measured on a map using compasses with two spikes, also called a dividing compass (or just "dividers"). The hinge is set in such a way that the distance between the spikes on the map represents a certain distance in reality, and by measuring how many times the compasses fit between two points on the map the distance between those points can be calculated.

Compasses and straightedge

Compasses-and-straightedge constructions are used to illustrate principles of plane geometry. Although a real pair of compasses is used to draft visible illustrations, the ideal compass used in proofs is an abstract creator of perfect circles. The most rigorous definition of this abstract tool is the "collapsing compass"; having drawn a circle from a given point with a given radius, it disappears; it cannot simply be moved to another point and used to draw another circle of equal radius (unlike a real pair of compasses). Euclid showed in his second proposition (Book I of the Elements ) that such a collapsing compass could be used to transfer a distance, proving that a collapsing compass could do anything a real compass can do.

Variants

A beam compass is an instrument, with a wooden or brass beam and sliding sockets, cursors or trammels, for drawing and dividing circles larger than those made by a regular pair of compasses. [2]

Scribe-compasses [3] is an instrument used by carpenters and other tradesmen. Some compasses can be used to draw circles, bisect angles and, in this case, to trace a line. It is the compass in the most simple form. Both branches are crimped metal. One branch has a pencil sleeve while the other branch is crimped with a fine point protruding from the end. A wing nut on the hinge serves two purposes: first it tightens the pencil and secondly it locks in the desired distance when the wing nut is turned clockwise.

Loose leg wing dividers [4] are made of all forged steel. The pencil holder, thumb screws, brass pivot and branches are all well built. They are used for scribing circles and stepping off repetitive measurements [5] with some accuracy.

A reduction compass or proportional dividers is used to reduce or enlarge patterns while conserving angles.

Ellipse drawing compasses are used to draw ellipse.

As a symbol

A computer drawn compass, used to symbolize precise designing of applications. Nuvola apps designer.svg
A computer drawn compass, used to symbolize precise designing of applications.

A pair of compasses is often used as a symbol of precision and discernment. As such it finds a place in logos and symbols such as the Freemasons' Square and Compasses and in various computer icons. English poet John Donne used the compass as a conceit in "A Valediction: Forbidding Mourning" (1611).

See also

Related Research Articles

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Drawing board</span> Desk used for drawings and architecture

A drawing board is, in its antique form, a kind of multipurpose desk which can be used for any kind of drawing, writing or impromptu sketching on a large sheet of paper or for reading a large format book or other oversized document or for drafting precise technical illustrations. The drawing table used to be a frequent companion to a pedestal desk in a study or private library, during the pre-industrial and early industrial era.

<span class="mw-page-title-main">Straightedge and compass construction</span> Method of drawing geometric objects

In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses.

<span class="mw-page-title-main">Archimedean spiral</span> Spiral with constant distance from itself

The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of Archimedes). It is the locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in polar coordinates (r, θ) it can be described by the equation with real number b. Changing the parameter b controls the distance between loops.

<span class="mw-page-title-main">Ruler</span> An instrument used to measure distances or to draw straight lines

A ruler, sometimes called a rule, scale or a line gauge, is an instrument used to make length measurements, whereby a user estimates a length by reading from a series of markings called "rules" along an edge of the device. Commonly the instrument is rigid and the edge itself is a straightedge, which additionally allows one to draw straight lines. Some rulers, such as cloth or paper tape measures, are non-rigid. Specialty rulers exist that have flexible edges that retain a chosen shape; these find use in sewing, arts, and crafts.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Angle trisection</span> Construction of an angle equal to one third a given angle

Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass.

<span class="mw-page-title-main">Poncelet–Steiner theorem</span> Universality of construction using just a straightedge and a single circle with center

In the branch of mathematics known as Euclidean geometry, the Poncelet–Steiner theorem is one of several results concerning compass and straightedge constructions having additional restrictions imposed on the traditional rules. This result, related to the rusty compass equivalence, states that whatever can be constructed by straightedge and compass together can be constructed by straightedge alone, provided that a single circle and its centre are given:

<span class="mw-page-title-main">Calipers</span> Tool used to measure dimensions of an object

Caliper(s) or calliper(s) are an instrument used to measure the dimensions of an object or hole; namely, the length, width, thickness, diameter or depth of an object or hole. The word caliper comes from latin roots meaning precise pincer.

<span class="mw-page-title-main">Milliradian</span> Angular measurement, thousandth of a radian

A milliradian is an SI derived unit for angular measurement which is defined as a thousandth of a radian (0.001 radian). Milliradians are used in adjustment of firearm sights by adjusting the angle of the sight compared to the barrel. Milliradians are also used for comparing shot groupings, or to compare the difficulty of hitting different sized shooting targets at different distances. When using a scope with both mrad adjustment and a reticle with mrad markings, the shooter can use the reticle as a ruler to count the number of mrads a shot was off-target, which directly translates to the sight adjustment needed to hit the target with a follow-up shot. Optics with mrad markings in the reticle can also be used to make a range estimation of a known size target, or vice versa, to determine a target size if the distance is known, a practice called "milling".

Marking out or layout means the process of transferring a design or pattern to a workpiece, as the first step in the manufacturing process. It is performed in many industries or hobbies although in the repetition industries the machine's initial setup is designed to remove the need to mark out every individual piece.

The sector, also known as a sector rule, proportional compass, or military compass, was a major calculating instrument in use from the end of the sixteenth century until the nineteenth century. It is an instrument consisting of two rulers of equal length joined by a hinge. A number of scales are inscribed upon the instrument which facilitate various mathematical calculations. It was used for solving problems in proportion, multiplication and division, geometry, and trigonometry, and for computing various mathematical functions, such as square roots and cube roots. Its several scales permitted easy and direct solutions of problems in gunnery, surveying and navigation. The sector derives its name from the fourth proposition of the sixth book of Euclid, where it is demonstrated that similar triangles have their like sides proportional. Some sectors also incorporated a quadrant, and sometimes a clamp at the end of one leg which allowed the device to be used as a gunner's quadrant.

A beam compass is a compass with a beam and sliding sockets or cursors for drawing and dividing circles larger than those made by a regular pair of compasses. The instrument can be as a whole, or made on the spot with individual sockets and any suitable beam.

<span class="mw-page-title-main">Technical drawing tool</span> Tools and instruments used for accurate and precise manual drafting

Drafting tools may be used for measurement and layout of drawings, or to improve the consistency and speed of creation of standard drawing elements. Tools such as pens and pencils mark the drawing medium. Other tools such as straight edges, assist the operator in drawing straight lines, or assist the operator in drawing complicated shapes repeatedly. Various scales and the protractor are used to measure the lengths of lines and angles, allowing accurate scale drawing to be carried out. The compass is used to draw arcs and circles. A drawing board was used to hold the drawing media in place; later boards included drafting machines that sped the layout of straight lines and angles. Tools such as templates and lettering guides assisted in the drawing of repetitive elements such as circles, ellipses, schematic symbols and text. Other auxiliary tools were used for special drawing purposes or for functions related to the preparation and revision of drawings. The tools used for manual technical drawing have been displaced by the advent of computer-aided drawing, drafting and design (CADD).

<span class="mw-page-title-main">Ellipsograph</span> Ellipse-drawing mechanism

An ellipsograph is a mechanism that generates the shape of an ellipse. One common form of ellipsograph is known as the trammel of Archimedes. It consists of two shuttles which are confined to perpendicular channels or rails and a rod which is attached to the shuttles by pivots at adjustable positions along the rod.

A cyclograph is an instrument for drawing arcs of large diameter circles whose centres are inconveniently or inaccessibly located, one version of which was invented by Scottish architect and mathematician Peter Nicholson.

<span class="mw-page-title-main">Quadratrix of Hippias</span> Curve where spinning and moving lines cross

The quadratrix or trisectrix of Hippias is a curve which is created by a uniform motion. It is one of the oldest examples for a kinematic curve. Its discovery is attributed to the Greek sophist Hippias of Elis, who used it around 420 BC in an attempt to solve the angle trisection problem. Later around 350 BC Dinostratus used it in an attempt to solve the problem of squaring the circle.

A schema for horizontal dials is a set of instructions used to construct horizontal sundials using compass and straightedge construction techniques, which were widely used in Europe from the late fifteenth century to the late nineteenth century. The common horizontal sundial is a geometric projection of an equatorial sundial onto a horizontal plane.

Geometric Constructions is a mathematics textbook on constructible numbers, and more generally on using abstract algebra to model the sets of points that can be created through certain types of geometric construction, and using Galois theory to prove limits on the constructions that can be performed. It was written by George E. Martin, and published by Springer-Verlag in 1998 as volume 81 of their Undergraduate Texts in Mathematics book series.

References

  1. a current vendor's product
  2. PD-icon.svg This article incorporates text from a publication now in the public domain :  Chambers, Ephraim, ed. (1728). "Beam-Compasses". Cyclopædia, or an Universal Dictionary of Arts and Sciences (1st ed.). James and John Knapton, et al.
  3. Fine Woodworking, Build a Fireplace Mantel, Mario Rodriquez, pgs. 73, 75, The Taunton Press, No. 184, June 2006
  4. The Carpenter's Manifesto, Jeffrey Ehrlich & Marc Mannheimer, Holt, Rhinehart & Winston, pg. 64, 1977
  5. Fine Woodworking, Laying out dovetails, Chris Gochnour, pg. 31, The Taunton Press, No. 190, April 2007