Oriented strand board

Last updated
OSB is easily identifiable by its characteristic wood strands. Oriented strand board at Courtaboeuf 2011.jpg
OSB is easily identifiable by its characteristic wood strands.

Oriented strand board (OSB) is a type of engineered wood similar to particle board, formed by adding adhesives and then compressing layers of wood strands (flakes) in specific orientations. It was invented by Armin Elmendorf in California in 1963. [1] OSB may have a rough and variegated surface with the individual strips of around 2.5 cm × 15 cm (1.0 by 5.9 inches), lying unevenly across each other, and is produced in a variety of types and thicknesses.

Contents

Oriented strand board is sometimes confused with chipboard, a synonym for particle board, whose "chips" are of a size that a lay person would likely describe as "particles".

Uses

OSB is frequently used in light steel frame house construction. LSFosb05.jpg
OSB is frequently used in light steel frame house construction.

OSB is a material with favorable mechanical properties that make it particularly suitable for load-bearing applications in construction. [2] It is now more popular than plywood, commanding 66% of the North American structural panel market. [3] The most common uses are as sheathing in walls, flooring, and roof decking. For exterior wall applications, panels are available with a radiant-barrier layer laminated to one side; this eases installation and increases energy performance of the building envelope. OSB is also used in furniture production.

Manufacturing

OSB in production before pressing in a thermal press OSB production.jpg
OSB in production before pressing in a thermal press

Oriented strand board is manufactured in wide mats from cross-oriented layers of thin, rectangular wooden strips compressed and bonded together with wax and synthetic resin adhesives.

The adhesive resins types used include: urea-formaldehyde (OSB type 1, nonstructural, nonwaterproof); isocyanate-based glue (or PMDI poly-methylene diphenyl diisocyanate based) in inner regions with melamine-urea-formaldehyde or phenol formaldehyde resin glues at surface (OSB type 2, structural, water resistant on face); phenol formaldehyde resin throughout (OSB types 3 and 4, structural, for use in damp and outside environments). [4]

The layers are created by shredding the wood into strips, which are sifted and then oriented on a belt or wire-mesh caul (a heated, ventilated support) and coated with the resin. [5] The layers thus built up are transferred to a forming line and cross-oriented so that strips on the external layers are aligned to the panel's strength axis, while the internal layers are perpendicular. [6] The number of layers placed is determined partly by the thickness of the panel, but is limited by the equipment installed at the manufacturing site. Individual layers can also vary in thickness to give different finished panel thicknesses; typically, a 15 cm (5.9 in) layer will produce a 15 mm (0.59 in) panel thickness[ citation needed ]. The mat is placed in a thermal press to compress the flakes and bond them by heat activation and curing of the resin that has been coated on the flakes. Individual panels are then cut from the mats into finished sizes. Most of the world's OSB is made in the United States and Canada in large production facilities.

Materials other than wood have been used to produce products similar to OSB. Oriented structural straw board is an engineered board made by splitting straw and formed by adding P-MDI adhesives and then hot compressing layers of straw in specific orientations. [7] Strand board can also be made from bagasse.

Production

In 2005, Canadian production was 10,500,000 m2 (113,000,000 sq ft) (38 in or 9.53 mm basis) of which 8,780,000 m2 (94,500,000 sq ft) (38 in or 9.53 mm) were exported, almost entirely to the United States. [8] In 2014, Romania became the largest OSB exporting country in Europe, with 28% of the exports going to Russia and 16% to Ukraine. [9]

Properties

OSB, closeup of corner OSB-Platte.jpg
OSB, closeup of corner

Adjustments to the manufacturing process can affect thickness, panel size, strength, and rigidity. OSB panels have no internal gaps or voids, and can be water-resistant, although they do require additional membranes to achieve impermeability to water and are not recommended for exterior use. The finished product has properties similar to plywood, but is uniform and cheaper. [10] However, in 2021 the price spiked 5% to 600% going from under $10 to almost $50 per 4x8 sheet for 7/16" nominal, before correcting into 2022. When tested to failure, OSB has a greater load-bearing capacity than milled wood panels. [11] It has replaced plywood in many environments, especially the North American structural panel market.

While OSB does not have a continuous grain like a natural wood, it does have greater strength on its long axis because more of the component grains are oriented in this direction. This can be seen by observing the alignment of the surface wood chips.

All wood-based structural use panels can be cut and installed with the same types of equipment as for solid wood.

Health and safety

The resins used to create OSB have raised questions regarding the potential for OSB to emit volatile organic compounds such as formaldehyde. Urea-formaldehyde is more toxic and should be avoided in home use. Phenol-formaldehyde products are considered to be relatively hazard free. Some newer types of OSB, so-called "new-generation" OSB panels, use isocyanate resins that do not contain formaldehyde and are considered nonvolatile when cured. [12] Industry trade groups assert that formaldehyde emissions from North American OSB are "negligible or nonexistent". [13]

Some manufacturers treat the wood chips with various borate compounds that are toxic to termites, wood-boring beetles, molds, and fungi, but not mammals in applied doses.

Types

Five grades of OSB are defined in EN 300 in terms of their mechanical performance and relative resistance to moisture: [2]

Related Research Articles

<span class="mw-page-title-main">Plywood</span> Manufactured wood panel made from thin sheets of wood veneer

Plywood is a composite material manufactured from thin layers, or "plies", of wood veneer that are glued together with adjacent layers, having their wood grain rotated up to 90° to one another. It is an engineered wood from the family of manufactured boards, which include medium-density fibreboard (MDF), oriented strand board (OSB), and particle board.

<span class="mw-page-title-main">Engineered wood</span> Range of derivative wood products engineered for uniform and predictable structural performance

Engineered wood, also called mass timber, composite wood, human-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches (410 mm) or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies.

<span class="mw-page-title-main">Medium-density fibreboard</span> Engineered wood product

Medium-density fibre (MDF) is an engineered wood product made by breaking down hardwood or softwood residuals into wood fibre, often in a defibrator, combining it with wax and a resin binder, and forming it into panels by applying high temperature and pressure. MDF is generally denser than plywood. It is made up of separated fibre but can be used as a building material similar in application to plywood. It is stronger and denser than particle board.

<span class="mw-page-title-main">Phenol formaldehyde resin</span> Chemical compound

Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins (plastics). They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.

<span class="mw-page-title-main">Structural insulated panel</span>

A structural insulated panel, or structural insulating panel, (SIP), is a form of sandwich panel used in the construction industry.

<span class="mw-page-title-main">Glued laminated timber</span> Building material

Glued laminated timber, commonly referred to as glulam, is a type of structural engineered wood product constituted by layers of dimensional timber bonded together with durable, moisture-resistant structural adhesives so that all of the grain runs parallel to the longitudinal axis. In North America, the material providing the laminations is termed laminating stock or lamstock.

<span class="mw-page-title-main">Particle board</span> Pressed and extruded wood product

Particle board, also known as particleboard, chipboard, and low-density fiberboard, is an engineered wood product manufactured from wood chips and a synthetic resin or other suitable binder, which is pressed and extruded. Particle board is often confused with oriented strand board, a different type of fiberboard that uses machined wood flakes and offers more strength.

<span class="mw-page-title-main">Hardboard</span> Type of fiberboard (engineered wood product)

Hardboard, also called high-density fiberboard (HDF), is a type of fiberboard, which is an engineered wood product. It is used in furniture and in the construction industry.

<span class="mw-page-title-main">Laminated veneer lumber</span> Engineered Wood Product used in wood frame construction

Laminated veneer lumber (LVL) is an engineered wood product that uses multiple layers of thin wood assembled with adhesives. It is typically used for headers, beams, rimboard, and edge-forming material. LVL offers several advantages over typical milled lumber: Made in a factory under controlled specifications, it is stronger, straighter, and more uniform. Due to its composite nature, it is much less likely than conventional lumber to warp, twist, bow, or shrink. LVL is a type of structural composite lumber, comparable to glued laminated timber (glulam) but with a higher allowable stress.A high performance more sustainable alternative to lumber, Laminated Veneer Lumber (LVL) beams, headers and columns are used in structural applications to carry heavy loads with minimum weight.

Urea-formaldehyde (UF), also known as urea-methanal, so named for its common synthesis pathway and overall structure, is a nontransparent thermosetting resin or polymer. It is produced from urea and formaldehyde. These resins are used in adhesives, plywood, particle board, medium-density fibreboard (MDF), and molded objects. In agriculture, urea-formaldehyde compounds are one of the most commonly used types of slow-release fertilizer.

Wood glue is an adhesive used to tightly bond pieces of wood together. Many substances have been used as glues. Traditionally animal proteins like casein from milk or collagen from animal hides and bones were boiled down to make early glues. They worked by solidifying as they dried. Later, glues were made from plant starches like flour or potato starch. When combined with water and heated, the starch gelatinizes and forms a sticky paste as it dries. Plant-based glues were common for books and paper products, though they can break down more easily over time compared to animal-based glues. Examples of modern wood glues include polyvinyl acetate (PVA) and epoxy resins. Some resins used in producing composite wood products may contain formaldehyde. As of 2021, “the wood panel industry uses almost 95% of synthetic petroleum-derived thermosetting adhesives, mainly based on urea, phenol, and melamine, among others”.

<span class="mw-page-title-main">Fiberboard</span> Engineered wood product made out of wood fibers

Fiberboard or fibreboard is a type of engineered wood product that is made out of wood fibers. Types of fiberboard include particle board or low-density fiberboard (LDF), medium-density fiberboard (MDF), and hardboard or high-density fiberboard (HDF).

Waferboard belongs to the subset of reconstituted wood panel products called flakeboards. It is a structural material made from rectangular wood flakes of controlled length and thickness bonded together with waterproof phenolic resin under extreme heat and pressure. The layers of flakes are not oriented, which makes it easier to manufacture. Waferboard is used as a material to build cheap furniture. This type of furniture is usually laminated.

<span class="mw-page-title-main">Building insulation material</span>

Building insulation materials are the building materials that form the thermal envelope of a building or otherwise reduce heat transfer.

Aero Research Limited (ARL) was a British company that pioneered several new adhesives, intended initially for the aeronautical industry.

<span class="mw-page-title-main">Rigid panel</span>

Rigid panel insulation, also referred to as continuous insulation, can be made from foam plastics such as polyurethane (PUR), polyisocyanurate (PIR), and polystyrene, or from fibrous materials such as fiberglass, rock and slag wool. Rigid panel continuous insulation is often used to provide a thermal break in the building envelope, thus reducing thermal bridging.

<span class="mw-page-title-main">Cross-laminated timber</span> Wood panel product made from solid-sawn lumber

Cross-laminated timber (CLT) is a subcategory of engineered wood with panel product made from gluing together at least three layers of solid-sawn lumber. Each layer of boards is usually oriented perpendicular to adjacent layers and glued on the wide faces of each board, usually in a symmetric way so that the outer layers have the same orientation. An odd number of layers is most common, but there are configurations with even numbers as well. Regular timber is an anisotropic material, meaning that the physical properties change depending on the direction at which the force is applied. By gluing layers of wood at right angles, the panel is able to achieve better structural rigidity in both directions. It is similar to plywood but with distinctively thicker laminations.

Tego film is an adhesive sheet used in the manufacture of waterproof plywood. It is applied dry and cured by heat, which allows for high-quality laminates that are free from internal voids and warping. Tego film plywood products were used in aircraft manufacture in Germany during World War II, and the loss of the plant during a 1943 bombing raid was a serious blow to several aircraft projects. Tego film was an invention of the Essen, Germany, firm of Th. Goldschmidt AG later Evonik Industries ).

<span class="mw-page-title-main">APA – The Engineered Wood Association</span>

APA – The Engineered Wood Association is a nonprofit trade association of the United States and Canadian engineered wood products industry. They represent engineered wood manufacturers and mandate things such as quality testing, product research, and market development. APA's corporate headquarters are in Tacoma, Washington. The headquarters campus includes an office building and a 42,000-square-foot Research Center. A regional quality testing laboratory is located in Atlanta, Georgia.

Oriented structural straw board (OSSB) is an engineered board that is made by splitting straw and formed by adding formaldehyde-free adhesives and then hot compressing layers of straw in specific orientations. Research and development for OSSB panels began in the mid 1980s and was spearheaded by the Alberta Research Council, Canada, which identified the straw strand manufacturing technology using formaldehyde-free (p-MDI) adhesives.

References

  1. "Dokument US000003164511A" (PDF). DEPATISnet. Deutsches Patent- und Markenamt. Retrieved 2 May 2016.
  2. 1 2 "Technical Information". Osb-info.org. Retrieved 2016-05-02.
  3. Marotte, Bertrand (19 July 2016). "Toronto's Norbord riding the rising wave of OSB sales". The Globe and Mail . Retrieved 20 September 2017.
  4. Oldhand, Tony (25 Apr 2017), "Types of Glue Used in OSB", sciencing.com
  5. Koch, Peter (1985). Utilization of hardwoods growing on southern pine sites. Washington, DC: U.S. Dept. of Agriculture, Forest Service. p. 2423. OCLC   13459178.
  6. Hedges, Keith E. (2017). "Oriented Strand Board". Architectural Graphic Standards (12 ed.). Hoboken, NJ: Wiley. ISBN   9781119312512.
  7. Han, Guangping, Cheng, Wanli, Manning, Mark, and Eloy, Pierre (2012). "Performance of zinc Borate Treated Oriented Structural Straw Board against Mold Fungi, Decay Fungi, and Termites - A preliminary trial" (PDF). BioResources. 7 (3): 2986–2995.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. "Review of the Canadian structural panel market". Fordaq.com. 24 August 2006. Retrieved 2016-05-02.
  9. "Romania has become the largest OSB exporting country in the EU". Fordaq. Fordaq S.A. 7 April 2014.
  10. "UMass Amherst: Building and Construction Technology » Choosing Between Oriented Strandboard and Plywood". Umass.edu. 2015-09-04. Retrieved 2016-05-02.
  11. Chaya Kurtz (2010-05-12). "Experts Talk About Engineered Wood - Articles". Networx.com. Retrieved 2016-05-02.
  12. MacLeod, Ian. "I'm concerned about toxic offgassing from OSB subflooring and roofing". Green home guide. Retrieved 2015-11-14.
  13. "Oriented Strand Board Educational Bulletin, Frequently Asked Questions" (PDF). OSBGuide. TECOTested.com. Retrieved 2 May 2016.