Steel frame

Last updated
Steel frame structure Steel frame structure.jpg
Steel frame structure
Rectangular steel frame, or "perimeter frame" of the Willis building (at right) contrasted against the diagrid frame at 30 St Mary Axe (at center), in London. Lloyds Axe and Willis.jpg
Rectangular steel frame, or "perimeter frame" of the Willis building (at right) contrasted against the diagrid frame at 30 St Mary Axe (at center), in London.

Steel frame is a building technique with a "skeleton frame" of vertical steel columns and horizontal I-beams, constructed in a rectangular grid to support the floors, roof and walls of a building which are all attached to the frame. The development of this technique made the construction of the skyscraper possible. [1] Steel frame has displaced its predecessor, the iron frame, in the early 20th century. [2]

Contents

Concept

The rolled steel "profile" or cross section of steel columns takes the shape of the letter "I". The two wide flanges of a column are thicker and wider than the flanges on a beam, to better withstand compressive stress in the structure. Square and round tubular sections of steel can also be used, often filled with concrete. Steel beams are connected to the columns with bolts and threaded fasteners, and historically connected by rivets. The central "web" of the steel I-beam is often wider than a column web to resist the higher bending moments that occur in beams.

Wide sheets of steel deck can be used to cover the top of the steel frame as a "form" or corrugated mold, below a thick layer of concrete and steel reinforcing bars. Another popular alternative is a floor of precast concrete flooring units with some form of concrete topping. Often in office buildings, the final floor surface is provided by some form of raised flooring system with the void between the walking surface and the structural floor being used for cables and air handling ducts.

The frame needs to be protected from fire because steel softens at high temperature and this can cause the building to partially collapse. In the case of the columns this is usually done by encasing it in some form of fire resistant structure such as masonry, concrete or plasterboard. The beams may be cased in concrete, plasterboard or sprayed with a coating to insulate it from the heat of the fire or it can be protected by a fire-resistant ceiling construction. Asbestos was a popular material for fireproofing steel structures up until the early 1970s, before the health risks of asbestos fibres were fully understood.

The exterior "skin" of the building is anchored to the frame using a variety of construction techniques and following a huge variety of architectural styles. Bricks, stone, reinforced concrete, architectural glass, sheet metal and simply paint have been used to cover the frame to protect the steel from the weather. [3]

Cold-formed steel frames

Interior partition walls made with cold-formed steel Light gage metal framing.JPG
Interior partition walls made with cold-formed steel

Cold-formed steel frames are also known as lightweight steel framing (LSF).

Thin sheets of galvanized steel can be cold formed into steel studs for use as a structural or non-structural building material for both external and partition walls in both residential, commercial and industrial construction projects (pictured). The dimension of the room is established with a horizontal track that is anchored to the floor and ceiling to outline each room. The vertical studs are arranged in the tracks, usually spaced 16 inches (410 mm) apart, and fastened at the top and bottom.

The typical profiles used in residential construction are the C-shape stud and the U-shaped track, and a variety of other profiles. Framing members are generally produced in a thickness of 12 to 25 gauge. Heavy gauges, such as 12 and 14 gauge, are commonly used when axial loads (parallel to the length of the member) are high, such as in load-bearing construction. Medium-heavy gauges, such as 16 and 18 gauge, are commonly used when there are no axial loads but heavy lateral loads (perpendicular to the member) such as exterior wall studs that need to resist hurricane-force wind loads along coasts. Light gauges, such as 25 gauge, are commonly used where there are no axial loads and very light lateral loads such as in interior construction where the members serve as framing for demising walls between rooms. The wall finish is anchored to the two flange sides of the stud, which varies from 1+14 to 3 inches (32 to 76 mm) thick, and the width of web ranges from 1+58 to 14 inches (41 to 356 mm). Rectangular sections are removed from the web to provide access for electrical wiring.

Steel mills produce galvanized sheet steel, the base material for the manufacture of cold-formed steel profiles. Sheet steel is then roll-formed into the final profiles used for framing. The sheets are zinc coated (galvanized) to increase protection against oxidation and corrosion. Steel framing provides excellent design flexibility due to the high strength-to-weight ratio of steel, which allows it to span over long distances, and also resist wind and earthquake loads.

Steel-framed walls can be designed to offer excellent thermal and acoustic properties – one of the specific considerations when building using cold-formed steel is that thermal bridging can occur across the wall system between the outside environment and interior conditioned space. Thermal bridging can be protected against by installing a layer of externally fixed insulation along the steel framing – typically referred to as a 'thermal break'.

The spacing between studs is typically 16 inches on center for home exterior and interior walls depending on designed loading requirements. In office suites the spacing is 24 inches (610 mm) on center for all walls except for elevator and staircase wells.

Hot-formed steel frames

Hot Formed frames, also known as hot-rolled steel frames, are engineered from steel that undergoes a complex manufacturing process known as hot rolling. During this procedure, steel members are heated to temperatures above the steel’s recrystallization temperature (1700˚F).This process serves to refine the grain structure of the steel and align its crystalline lattice. It is then passed through precision rollers to achieve the desired frame profiles. [4]

The distinctive feature of hot formed frames is their substantial beam thickness and larger dimensions, making them more robust compared to their cold rolled counterparts. This inherent strength makes them particularly well-suited for application in larger structures, as they show minimal deformation when subjected to substantial loads.

While it is true that hot rolled steel members often have a higher initial cost per component when compared to cold rolled steel, their cost-efficiency becomes increasingly evident when used in the construction of larger structures. This is due to the fact that hot rolled steel frames require fewer components to span equivalent distances, leading to economic advantages in bigger projects.

History

A school building being demolished in Tama New Town, Tokyo due to low enrolment, showing the steel frame used during its construction inside the remaining piece of outer wall. Duo Mo niyutaundeShao Zi Hua niBan iJie Ti sarerupurehabuXiao Yadoru 150710.JPG
A school building being demolished in Tama New Town, Tokyo due to low enrolment, showing the steel frame used during its construction inside the remaining piece of outer wall.

The use of steel instead of iron for structural purposes was initially slow. The first iron-framed building, Ditherington Flax Mill, had been built in 1797, but it was not until the development of the Bessemer process in 1855 that steel production was made efficient enough for steel to be a widely used material. Cheap steels, which had high tensile and compressive strengths and good ductility, were available from about 1870, but wrought and cast iron continued to satisfy most of the demand for iron-based building products, due mainly to problems of producing steel from alkaline ores. These problems, caused principally by the presence of phosphorus, were solved by Sidney Gilchrist Thomas in 1879.

It was not until 1880 that an era of construction based on reliable mild steel began. By that date the quality of steels being produced had become reasonably consistent. [5]

The Home Insurance Building, completed in 1885, was the first to use skeleton frame construction, completely removing the load bearing function of its masonry cladding. In this case the iron columns are merely embedded in the walls, and their load carrying capacity appears to be secondary to the capacity of the masonry, particularly for wind loads. In the United States, the first steel framed building was the Rand McNally Building in Chicago, erected in 1890.

The Royal Insurance Building in Liverpool designed by James Francis Doyle in 1895 (erected 1896–1903) was the first to use a steel frame in the United Kingdom. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Reinforced concrete</span> Concrete with rebar

Reinforced concrete, also called ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having higher tensile strength or ductility. The reinforcement is usually, though not necessarily, steel bars (rebar) and is usually embedded passively in the concrete before the concrete sets. However, post-tensioning is also employed as a technique to reinforce the concrete. In terms of volume used annually, it is one of the most common engineering materials. In corrosion engineering terms, when designed correctly, the alkalinity of the concrete protects the steel rebar from corrosion.

<span class="mw-page-title-main">Rebar</span> Steel reinforcement

Rebar, known when massed as reinforcing steel or steel reinforcement, is a steel bar used as a tension device in reinforced concrete and reinforced masonry structures to strengthen and aid the concrete under tension. Concrete is strong under compression, but has low tensile strength. Rebar significantly increases the tensile strength of the structure. Rebar's surface features a continuous series of ribs, lugs or indentations to promote a better bond with the concrete and reduce the risk of slippage.

<span class="mw-page-title-main">Beam (structure)</span> Structural element capable of withstanding loads by resisting bending

A beam is a structural element that primarily resists loads applied laterally across the beam's axis. Its mode of deflection is primarily by bending, as loads produce reaction forces at the beam's support points and internal bending moments, shear, stresses, strains, and deflections. Beams are characterized by their manner of support, profile, equilibrium conditions, length, and material.

<span class="mw-page-title-main">Structural insulated panel</span>

A structural insulated panel, or structural insulating panel, (SIP), is a form of sandwich panel used in the construction industry.

<span class="mw-page-title-main">Curtain wall (architecture)</span> Outer non-structural walls of a building

A curtain wall is an exterior covering of a building in which the outer walls are non-structural, instead serving to protect the interior of the building from the elements. Because the curtain wall façade carries no structural load beyond its own dead load weight, it can be made of lightweight materials. The wall transfers lateral wind loads upon it to the main building structure through connections at floors or columns of the building.

<span class="mw-page-title-main">Seismic retrofit</span> Modification of existing structures to make them more resistant to seismic activity

Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. With better understanding of seismic demand on structures and with recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged. Prior to the introduction of modern seismic codes in the late 1960s for developed countries and late 1970s for many other parts of the world, many structures were designed without adequate detailing and reinforcement for seismic protection. In view of the imminent problem, various research work has been carried out. State-of-the-art technical guidelines for seismic assessment, retrofit and rehabilitation have been published around the world – such as the ASCE-SEI 41 and the New Zealand Society for Earthquake Engineering (NZSEE)'s guidelines. These codes must be regularly updated; the 1994 Northridge earthquake brought to light the brittleness of welded steel frames, for example.

A load-bearing wall or bearing wall is a wall that is an active structural element of a building, which holds the weight of the elements above it, by conducting its weight to a foundation structure below it.

This page is a list of construction topics.

<span class="mw-page-title-main">Shear wall</span> A wall intended to withstand the lateral load

In structural engineering, a shear wall is a two-dimensional vertical element of a system that is designed to resist in-plane lateral forces, typically wind and seismic loads.

<span class="mw-page-title-main">Framing (construction)</span> Construction technique

Framing, in construction, is the fitting together of pieces to give a structure support and shape. Framing materials are usually wood, engineered wood, or structural steel. The alternative to framed construction is generally called mass wall construction, where horizontal layers of stacked materials such as log building, masonry, rammed earth, adobe, etc. are used without framing.

<span class="mw-page-title-main">I-beam</span> Construction element

An I-beam is any of various structural members with an I or H-shaped cross-section. Technical terms for similar items include H-beam, w-beam, universal beam (UB), rolled steel joist (RSJ), or double-T. I-beams are typically made of structural steel and serve a wide variety of construction uses.

A tie, strap, tie rod, eyebar, guy-wire, suspension cables, or wire ropes, are examples of linear structural components designed to resist tension. It is the opposite of a strut or column, which is designed to resist compression. Ties may be made of any tension resisting material.

<span class="mw-page-title-main">Formwork</span> Molds for cast

Formwork is molds into which concrete or similar materials are either precast or cast-in-place. In the context of concrete construction, the falsework supports the shuttering molds. In specialty applications formwork may be permanently incorporated into the final structure, adding insulation or helping reinforce the finished structure.

<span class="mw-page-title-main">Structural steel</span> Type of steel used in construction

Structural steel is a category of steel used for making construction materials in a variety of shapes. Many structural steel shapes take the form of an elongated beam having a profile of a specific cross section. Structural steel shapes, sizes, chemical composition, mechanical properties such as strengths, storage practices, etc., are regulated by standards in most industrialized countries.

<span class="mw-page-title-main">Precast concrete</span> Construction material

Precast concrete is a construction product produced by casting concrete in a reusable mold or "form" which is then cured in a controlled environment, transported to the construction site and maneuvered into place; examples include precast beams, and wall panels for tilt up construction. In contrast, cast-in-place concrete is poured into site-specific forms and cured on site.

<span class="mw-page-title-main">Girder bridge</span> Bridge built of girders placed on bridge abutments and foundation piers

A girder bridge is a bridge that uses girders as the means of supporting its deck. The two most common types of modern steel girder bridges are plate and box.

Glass fibre reinforced concrete (GFRC) is a type of fibre-reinforced concrete. The product is also known as glassfibre reinforced concrete or GRC in British English. Glass fibre concretes are mainly used in exterior building façade panels and as architectural precast concrete. Somewhat similar materials are fibre cement siding and cement boards.

<span class="mw-page-title-main">Steel building</span>

A steel building is a metal structure fabricated with steel for the internal support and for exterior cladding, as opposed to steel framed buildings which generally use other materials for floors, walls, and external envelope. Steel buildings are used for a variety of purposes including storage, work spaces and living accommodation. They are classified into specific types depending on how they are used.

<span class="mw-page-title-main">Cold-formed steel</span> Steel products shaped by cold-working processes

Cold-formed steel (CFS) is the common term for steel products shaped by cold-working processes carried out near room temperature, such as rolling, pressing, stamping, bending, etc. Stock bars and sheets of cold-rolled steel (CRS) are commonly used in all areas of manufacturing. The terms are opposed to hot-formed steel and hot-rolled steel.

<span class="mw-page-title-main">Infill wall</span>

The infill wall is the supported wall that closes the perimeter of a building constructed with a three-dimensional framework structure. Therefore, the structural frame ensures the bearing function, whereas the infill wall serves to separate inner and outer space, filling up the boxes of the outer frames. The infill wall has the unique static function to bear its own weight. The infill wall is an external vertical opaque type of closure. With respect to other categories of wall, the infill wall differs from the partition that serves to separate two interior spaces, yet also non-load bearing, and from the load bearing wall. The latter performs the same functions of the infill wall, hygro-thermically and acoustically, but performs static functions too.

References

  1. "Early steel-frame high-rises". 2022.
  2. Bussell 2008, p. 173.
  3. "Light Gauge Steel Framing Shop Drawings". October 10, 2022.
  4. "Hot Rolled Steel Buildings Deep Dive". August 20, 2023.
  5. "The properties of cast iron, wrought iron and steel" Archived 2014-03-24 at the Wayback Machine
  6. Jackson, Alistair, A. "The Development of Steel Framed Buildings in Britain 1880–1905", Construction History, Vol. 14 (1998)

Sources