Coefficient of restitution

Last updated

A bouncing ball captured with a stroboscopic flash at 25 images per second: Ignoring air resistance, the square root of the ratio of the height of one bounce to that of the preceding bounce gives the coefficient of restitution for the ball/surface impact. Bouncing ball strobe edit.jpg
A bouncing ball captured with a stroboscopic flash at 25 images per second: Ignoring air resistance, the square root of the ratio of the height of one bounce to that of the preceding bounce gives the coefficient of restitution for the ball/surface impact.

In physics, the coefficient of restitution (COR, also denoted by e), can be thought of as a measure of the elasticity of a collision between two bodies. It is a dimensionless parameter defined as the ratio of the relative velocity of separation after a two-body collision to the relative velocity of approach before collision. In most real-word collisions, the value of e lies somewhere between 0 and 1, where 1 represents a perfectly elastic collision (in which the objects rebound with no loss of speed but in the opposite directions) and 0 a perfectly inelastic collision (in which the objects do not rebound at all, and end up touching). The basic equation, sometimes known as Newton's restitution equation was developed by Sir Isaac Newton in 1687. [1]

Contents

Introduction

As a property of paired objects

The COR is a property of a pair of objects in a collision, not a single object. If a given object collides with two different objects, each collision has its own COR. When a single object is described as having a given coefficient of restitution, as if it were an intrinsic property without reference to a second object, some assumptions have been made – for example that the collision is with another identical object, or with perfectly rigid wall.

Treated as a constant

In a basic analysis of collisions, e is generally treated as a dimensionless constant, independent of the mass and relative velocities of the two objects, with the collision being treated as effectively instantaneous. An example often used for teaching is the collision of two idealised billiard balls. Real world interactions may be more complicated, for example where the internal structure of the objects needs to be taken into account, or where there are more complex effects happening during the time between initial contact and final separation.

Range of values for e

e is usually a positive, real number between 0 and 1:

Values outside that range are in principle possible, though in practice they would not normally be analysed with a basic analysis that takes e to be a constant:

Equations

In the case of a one-dimensional collision involving two idealised objects, A and B, the coefficient of restitution is given by: where:

This is sometimes known as the restitution equation. For a perfectly elastic collision, e = 1 and the objects rebound with the same relative speed with which they approached. For a perfectly inelastic collision e = 0 and the objects do not rebound at all.

For an object bouncing off a stationary target, e is defined as the ratio of the object's rebound speed after the impact to that prior to impact: where

In a case where frictional forces can be neglected and the object is dropped from rest onto a horizontal surface, this is equivalent to: where

The coefficient of restitution can be thought of as a measure of the extent to which energy is conserved when an object bounces off a surface. In the case of an object bouncing off a stationary target, the change in gravitational potential energy, Ep, during the course of the impact is essentially zero; thus, e is a comparison between the kinetic energy, Ek, of the object immediately before impact with that immediately after impact:In a cases where frictional forces can be neglected (nearly every student laboratory on this subject [2] ), and the object is dropped from rest onto a horizontal surface, the above is equivalent to a comparison between the Ep of the object at the drop height with that at the bounce height. In this case, the change in Ek is zero (the object is essentially at rest during the course of the impact and is also at rest at the apex of the bounce); thus:

Speeds after impact

Although e does not vary with the masses of the colliding objects, their final velocities are mass-dependent due to conservation of momentum: and where

Practical issues

Measurement

In practical situations, the coefficient of restitution between two bodies may have to be determined experimentally, for example using the Leeb rebound hardness test. This uses a tip of tungsten carbide, one of the hardest substances available, dropped onto test samples from a specific height.

A comprehensive study of coefficients of restitution in dependence on material properties (elastic moduli, rheology), direction of impact, coefficient of friction and adhesive properties of impacting bodies can be found in Willert (2020). [3]

Application in sports

Thin-faced golf club drivers utilize a "trampoline effect" that creates drives of a greater distance as a result of the flexing and subsequent release of stored energy which imparts greater impulse to the ball. The USGA (America's governing golfing body) tests [4] drivers for COR and has placed the upper limit at 0.83. COR is a function of rates of clubhead speeds and diminish as clubhead speed increase. [5] In the report COR ranges from 0.845 for 90 mph to as low as 0.797 at 130 mph. The above-mentioned "trampoline effect" shows this since it reduces the rate of stress of the collision by increasing the time of the collision. According to one article (addressing COR in tennis racquets), "[f]or the Benchmark Conditions, the coefficient of restitution used is 0.85 for all racquets, eliminating the variables of string tension and frame stiffness which could add or subtract from the coefficient of restitution." [6]

The International Table Tennis Federation specifies that the ball shall bounce up 24–26 cm when dropped from a height of 30.5 cm on to a standard steel block, [7] implying a COR of 0.887 to 0.923.

The International Basketball Federation (FIBA) rules require that the ball rebound to a height of between 1035 and 1085 mm when dropped from a height of 1800 mm, [8] implying a COR between 0.758 and 0.776.

See also

Related Research Articles

<span class="mw-page-title-main">Kinetic energy</span> Energy of a moving physical body

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.

<span class="mw-page-title-main">Maxwell–Boltzmann distribution</span> Specific probability distribution function, important in physics

In physics, the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

<span class="mw-page-title-main">Momentum</span> Property of a mass in motion

In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is: In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second.

<span class="mw-page-title-main">Escape velocity</span> Concept in celestial mechanics

In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming:

<span class="mw-page-title-main">Collision</span> Instance of two or more bodies physically contacting each other within a short period of time

In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word collision refers to incidents in which two or more objects collide with great force, the scientific use of the term implies nothing about the magnitude of the force.

<span class="mw-page-title-main">Kinetic theory of gases</span> Understanding of gas properties in terms of molecular motion

The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. It treats a gas as composed of numerous particles, too small to see with a microscope, which are constantly in random motion. Their collisions with each other and with the walls of their container are used to explain physical properties of the gas—for example, the relationship between its temperature, pressure, and volume. The particles are now known to be the atoms or molecules of the gas.

<span class="mw-page-title-main">Elastic collision</span> Collision in which kinetic energy is conserved

In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise, or potential energy.

<span class="mw-page-title-main">Inelastic collision</span> Collision in which energy is lost to heat

An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction.

In physics, mean free path is the average distance over which a moving particle travels before substantially changing its direction or energy, typically as a result of one or more successive collisions with other particles.

<span class="mw-page-title-main">Terminal velocity</span> Highest velocity attainable by a falling object

Terminal velocity is the maximum speed attainable by an object as it falls through a fluid. It is reached when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration. For objects falling through air at normal pressure, the buoyant force is usually dismissed and not taken into account, as its effects are negligible.

<span class="mw-page-title-main">Projectile motion</span> Motion of launched objects due to gravity

Projectile motion is a form of motion experienced by an object or particle that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive.

<span class="mw-page-title-main">Hyperbolic trajectory</span> Concept in astrodynamics

In astrodynamics or celestial mechanics, a hyperbolic trajectory or hyperbolic orbit is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fact that according to Newtonian theory such an orbit has the shape of a hyperbola. In more technical terms this can be expressed by the condition that the orbital eccentricity is greater than one.

In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities that is specific to a material or substance or field, and approximates its response to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. This can exist between two fluid layers, two solid surfaces, or between a fluid and a solid surface. Drag forces tend to decrease fluid velocity relative to the solid object in the fluid's path.

<span class="mw-page-title-main">Torricelli's law</span> Theorem in fluid mechanics

Torricelli's law, also known as Torricelli's theorem, is a theorem in fluid dynamics relating the speed of fluid flowing from an orifice to the height of fluid above the opening. The law states that the speed of efflux of a fluid through a sharp-edged hole in the wall of the tank filled to a height above the hole is the same as the speed that a body would acquire in falling freely from a height ,

<span class="mw-page-title-main">Relative velocity</span> Velocity measured relative to an observer

The relative velocity of an object B relative to an observer A, denoted , is the velocity vector of B measured in the rest frame of A. The relative speed is the vector norm of the relative velocity.

<span class="mw-page-title-main">Proper velocity</span> Ratio in relativity

In relativity, proper velocityw of an object relative to an observer is the ratio between observer-measured displacement vector and proper time τ elapsed on the clocks of the traveling object:

<span class="mw-page-title-main">Velocity</span> Speed and direction of a motion

Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

In astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line.

<span class="mw-page-title-main">Bouncing ball</span> Physics of bouncing balls

The physics of a bouncing ball concerns the physical behaviour of bouncing balls, particularly its motion before, during, and after impact against the surface of another body. Several aspects of a bouncing ball's behaviour serve as an introduction to mechanics in high school or undergraduate level physics courses. However, the exact modelling of the behaviour is complex and of interest in sports engineering.

References

  1. Weir, G.; McGavin, P. (8 May 2008). "The coefficient of restitution for the idealized impact of a spherical, nano-scale particle on a rigid plane". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 464 (2093): 1295–1307. Bibcode:2008RSPSA.464.1295W. doi:10.1098/rspa.2007.0289. S2CID   122562612.
  2. Mohazzabi, Pirooz (2011). "When Does Air Resistance Become Significant in Free Fall?". The Physics Teacher. 49 (2): 89–90. Bibcode:2011PhTea..49...89M. doi:10.1119/1.3543580.
  3. Willert, Emanuel (2020). Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen (in German). Springer Vieweg. doi:10.1007/978-3-662-60296-6. ISBN   978-3-662-60295-9. S2CID   212954456.
  4. Conforming Golf Club usga.org Archived 16 June 2021 at the Wayback Machine
  5. "Do Long Hitters Get An Unfair Advantage?". USGA. 14 February 2015. Retrieved 1 June 2023.
  6. "Coefficient of Restitution". Archived from the original on 23 November 2016.
  7. "Tennis Tech resources | ITF". Archived from the original on 3 December 2019.
  8. "FIBA basketball". FIBA.basketball. Retrieved 17 October 2024. (See page 12 of the Official Basketball Rules 2024 - Basketball Equipment, a pdf document downloadable from the Equipment & Venue tab of FIBA.basketball, and available at https://assets.fiba.basketball/image/upload/documents-corporate-fiba-official-rules-2024-official-basketball-rules-and-basketball-equipment.pdf)

Works cited