Coefficient of restitution

Last updated
A bouncing ball captured with a stroboscopic flash at 25 images per second: Ignoring air resistance, the square root of the ratio of the height of one bounce to that of the preceding bounce gives the coefficient of restitution for the ball/surface impact. Bouncing ball strobe edit.jpg
A bouncing ball captured with a stroboscopic flash at 25 images per second: Ignoring air resistance, the square root of the ratio of the height of one bounce to that of the preceding bounce gives the coefficient of restitution for the ball/surface impact.

The coefficient of restitution (COR, also denoted by e), is the ratio of the final to initial relative speed between two objects after they collide. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfectly inelastic collision has a coefficient of 0, but a 0 value does not have to be perfectly inelastic. It is measured in the Leeb rebound hardness test, expressed as 1000 times the COR, but it is only a valid COR for the test, not as a universal COR for the material being tested.

Contents

The value is almost always less than 1 due to initial translational kinetic energy being lost to rotational kinetic energy, plastic deformation, and heat. It can be more than 1 if there is an energy gain during the collision from a chemical reaction, a reduction in rotational energy, or another internal energy decrease that contributes to the post-collision velocity.

The mathematics were developed by Sir Isaac Newton in 1687. [1] It is also known as Newton's experimental law.

Further details

Line of impact – It is the line along which e is defined or in absence of tangential reaction force between colliding surfaces, force of impact is shared along this line between bodies. During physical contact between bodies during impact its line along common normal to pair of surfaces in contact of colliding bodies. Hence e is defined as a dimensionless one-dimensional parameter.

Range of values for e – treated as a constant

e is usually a positive, real number between 0 and 1:

Paired objects

The COR is a property of a pair of objects in a collision, not a single object. If a given object collides with two different objects, each collision would have its own COR. When an object is described as having a coefficient of restitution, as if it were an intrinsic property without reference to a second object, it is assumed to be between identical spheres or against a perfectly rigid wall.

A perfectly rigid wall is not possible but can be approximated by a steel block if investigating the COR of spheres with a much smaller modulus of elasticity. Otherwise, the COR will rise and then fall based on collision velocity in a more complicated manner. [5]

Relationship with conservation of energy and momentum

In a one-dimensional collision, the two key principles are: conservation of energy (conservation of kinetic energy if the collision is perfectly elastic) and conservation of (linear) momentum. A third equation can be derived[ citation needed ] from these two, which is the restitution equation as stated above. When solving problems, any two of the three equations can be used. The advantage of using the restitution equation is that it sometimes provides a more convenient way to approach the problem.

Let , be the mass of object 1 and object 2 respectively. Let , be the initial velocity of object 1 and object 2 respectively. Let , be the final velocity of object 1 and object 2 respectively.

From the first equation,

From the second equation,

After division,

The equation above is the restitution equation, and the coefficient of restitution is 1, which is a perfectly elastic collision.

Sports equipment

Thin-faced golf club drivers utilize a "trampoline effect" that creates drives of a greater distance as a result of the flexing and subsequent release of stored energy which imparts greater impulse to the ball. The USGA (America's governing golfing body) tests [6] drivers for COR and has placed the upper limit at 0.83. COR is a function of rates of clubhead speeds and diminish as clubhead speed increase. [7] In the report COR ranges from 0.845 for 90 mph to as low as 0.797 at 130 mph. The above-mentioned "trampoline effect" shows this since it reduces the rate of stress of the collision by increasing the time of the collision. According to one article (addressing COR in tennis racquets), "[f]or the Benchmark Conditions, the coefficient of restitution used is 0.85 for all racquets, eliminating the variables of string tension and frame stiffness which could add or subtract from the coefficient of restitution." [8]

The International Table Tennis Federation specifies that the ball shall bounce up 24–26 cm when dropped from a height of 30.5 cm on to a standard steel block thereby having a COR of 0.887 to 0.923. [9]

A basketball's COR is designated by requiring that the ball shall rebound to a height of between 960 and 1160 mm when dropped from a height of 1800 mm, resulting in a COR between 0.73–0.80. [10] [ failed verification ]

Equations

In the case of a one-dimensional collision involving two objects, object A and object B, the coefficient of restitution is given by:

where:

Though does not explicitly depend on the masses of the objects, it is important to note that the final velocities are mass-dependent. For two- and three-dimensional collisions of rigid bodies, the velocities used are the components perpendicular to the tangent line/plane at the point of contact, i.e. along the line of impact.

For an object bouncing off a stationary target, is defined as the ratio of the object's speed after the impact to that prior to impact:

where

In a case where frictional forces can be neglected and the object is dropped from rest onto a horizontal surface, this is equivalent to:

where

The coefficient of restitution can be thought of as a measure of the extent to which mechanical energy is conserved when an object bounces off a surface. In the case of an object bouncing off a stationary target, the change in gravitational potential energy, Ep, during the course of the impact is essentially zero; thus, is a comparison between the kinetic energy, Ek, of the object immediately before impact with that immediately after impact:

In a cases where frictional forces can be neglected (nearly every student laboratory on this subject [11] ), and the object is dropped from rest onto a horizontal surface, the above is equivalent to a comparison between the Ep of the object at the drop height with that at the bounce height. In this case, the change in Ek is zero (the object is essentially at rest during the course of the impact and is also at rest at the apex of the bounce); thus:

Speeds after impact

The equations for collisions between elastic particles can be modified to use the COR, thus becoming applicable to inelastic collisions, as well, and every possibility in between.

and

where

Derivation

The above equations can be derived from the analytical solution to the system of equations formed by the definition of the COR and the law of the conservation of momentum (which holds for all collisions). Using the notation from above where represents the velocity before the collision and after, yields:

Solving the momentum conservation equation for and the definition of the coefficient of restitution for yields:

Next, substitution into the first equation for and then resolving for gives:

A similar derivation yields the formula for .

COR variation due to object shape and off-center collisions

When colliding objects do not have a direction of motion that is in-line with their centers of gravity and point of impact, or if their contact surfaces at that point are not perpendicular to that line, some energy that would have been available for the post-collision velocity difference will be lost to rotation and friction. Energy losses to vibration and the resulting sound are usually negligible.

Colliding different materials and practical measurement

When a soft object strikes a harder object, most of the energy available for the post-collision velocity will be stored in the soft object. The COR will depend on how efficient the soft object is at storing the energy in compression without losing it to heat and plastic deformation. A rubber ball will bounce better off concrete than a glass ball, but the COR of glass-on-glass is a lot higher than rubber-on-rubber because some of the energy in rubber is lost to heat when it is compressed. When a rubber ball collides with a glass ball, the COR will depend entirely on the rubber. For this reason, determining the COR of a material when there is not identical material for collision is best done by using a much harder material.

Since there is no perfectly rigid material, hard materials such as metals and ceramics have their COR theoretically determined by considering the collision between identical spheres. In practice, a 2-ball Newton's cradle may be employed but such a set up is not conducive to quickly testing samples.

The Leeb rebound hardness test is the only commonly-available test related to determining the COR. It uses a tip of tungsten carbide, one of the hardest substances available, dropped onto test samples from a specific height. But the shape of the tip, the velocity of impact, and the tungsten carbide are all variables that affect the result that is expressed in terms of 1000*COR. It does not give an objective COR for the material that is independent from the test.

A comprehensive study of coefficients of restitution in dependence on material properties (elastic moduli, rheology), direction of impact, coefficient of friction and adhesive properties of impacting bodies can be found in Willert (2020). [12]

Predicting from material properties

The COR is not a material property because it changes with the shape of the material and the specifics of the collision, but it can be predicted from material properties and the velocity of impact when the specifics of the collision are simplified. To avoid the complications of rotational and frictional losses, we can consider the ideal case of an identical pair of spherical objects, colliding so that their centers of mass and relative velocity are all in-line.

Many materials like metals and ceramics (but not rubbers and plastics) are assumed to be perfectly elastic when their yield strength is not approached during impact. The impact energy is theoretically stored only in the spring-effect of elastic compression and results in e = 1. But this applies only at velocities less than about 0.1 m/s to 1 m/s. The elastic range can be exceeded at higher velocities because all the kinetic energy is concentrated at the point of impact. Specifically, the yield strength is usually exceeded in part of the contact area, losing energy to plastic deformation by not remaining in the elastic region. To account for this, the following estimates the COR by estimating the percent of the initial impact energy that did not get lost to plastic deformation. Approximately, it divides how easily a volume of the material can store energy in compression () by how well it can stay in the elastic range ():

For a given material density and velocity this results in:

A high yield strength allows more of the "contact volume" of the material to stay in the elastic region at higher energies. A lower elastic modulus allows a larger contact area to develop during impact so the energy is distributed to a larger volume beneath the surface at the contact point. This helps prevent the yield strength from being exceeded.

A more precise theoretical development [13] shows the velocity and density of the material to also be important when predicting the COR at moderate velocities faster than elastic collision (greater than 0.1 m/s for metals) and slower than large permanent plastic deformation (less than 100 m/s). A lower velocity increases the coefficient by needing less energy to be absorbed. A lower density also means less initial energy needs to be absorbed. The density instead of mass is used because the volume of the sphere cancels out with the volume of the affected volume at the contact area. In this way, the radius of the sphere does not affect the coefficient. A pair of colliding spheres of different sizes but of the same material have the same coefficient as below, but multiplied by

Combining these four variables, a theoretical estimation of the coefficient of restitution can be made when a ball is dropped onto a surface of the same material. [14]

This equation overestimates the actual COR. For metals, it applies when v is approximately between 0.1 m/s and 100 m/s and in general when:

At slower velocities the COR is higher than the above equation predicts, theoretically reaching e=1 when the above fraction is less than m/s. It gives the following theoretical coefficient of restitution for solid spheres dropped 1 meter (v = 4.5 m/s). Values greater than 1 indicate that the equation has errors. Yield strength instead of dynamic yield strength was used.

Metals and Ceramics:Predicted COR, e
silicon1.79
Alumina0.45 to 1.63
silicon nitride0.38 to 1.63
silicon carbide0.47 to 1.31
highest amorphous metal1.27
tungsten carbide0.73 to 1.13
stainless steel0.63 to 0.93
magnesium alloys0.5 to 0.89
titanium alloy grade 50.84
aluminum alloy 7075-T60.75
glass (soda-lime)0.69
glass (borosilicate)0.66
nickel alloys0.15 to 0.70
zinc alloys0.21 to 0.62
cast iron0.3 to 0.6
copper alloys0.15 to 0.55
titanium grade 20.46
tungsten0.37
aluminum alloys 3003 6061, 7075-00.35
zinc0.21
nickel0.15
copper0.15
aluminum0.1
lead0.08

The COR for plastics and rubbers are greater than their actual values because they do not behave as ideally elastic as metals, glasses, and ceramics due to heating during compression. So the following is only a guide to ranking of polymers.

Polymers (overestimated compared to metals and ceramics):

  • polybutadiene (golf balls shell)
  • butyl rubber
  • EVA
  • silicone elastomers
  • polycarbonate
  • nylon
  • polyethylene
  • Teflon
  • polypropylene
  • ABS
  • acrylic
  • PET
  • polystyrene
  • PVC

For metals the range of speeds to which this theory can apply is about 0.1 to 5 m/s which is a drop of 0.5 mm to 1.25 meters (page 366 [15] ).

See also

Related Research Articles

<span class="mw-page-title-main">Momentum</span> Property of a mass in motion

In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is :

<span class="mw-page-title-main">Rutherford scattering</span> Elastic scattering of charged particles by the Coulomb force

In particle physics, Rutherford scattering is the elastic scattering of charged particles by the Coulomb interaction. It is a physical phenomenon explained by Ernest Rutherford in 1911 that led to the development of the planetary Rutherford model of the atom and eventually the Bohr model. Rutherford scattering was first referred to as Coulomb scattering because it relies only upon the static electric (Coulomb) potential, and the minimum distance between particles is set entirely by this potential. The classical Rutherford scattering process of alpha particles against gold nuclei is an example of "elastic scattering" because neither the alpha particles nor the gold nuclei are internally excited. The Rutherford formula further neglects the recoil kinetic energy of the massive target nucleus.

<span class="mw-page-title-main">Collision</span> Instance of two or more bodies physically contacting each other within short period of time

In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word collision refers to incidents in which two or more objects collide with great force, the scientific use of the term implies nothing about the magnitude of the force.

<span class="mw-page-title-main">Kinetic theory of gases</span> Historical physical model of gases

The kinetic theory of gases is a simple, historically significant classical model of the thermodynamic behavior of gases, with which many principal concepts of thermodynamics were established. The model describes a gas as a large numbers of identical submicroscopic particles, all of which are in constant, rapid, random motion. Their size is assumed to be much smaller than the average distance between the particles. The particles undergo random collisions assumed to be elastic collisions between themselves and with the enclosing walls of the container. The basic version of the model describes the ideal gas, and considers no other interactions between the particles.

<span class="mw-page-title-main">Ideal gas</span> Mathematical model which approximates the behavior of real gases

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

<span class="mw-page-title-main">Elastic collision</span> Collision in which kinetic energy is conserved

In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise, or potential energy.

<span class="mw-page-title-main">Inelastic collision</span> Collision in which energy is lost to heat

An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction.

<span class="mw-page-title-main">Speed of sound</span> Speed of sound wave through elastic medium

The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 metres per second, or one kilometre in 2.91 s or one mile in 4.69 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s. More simply, the speed of sound is how fast vibrations travel.

<span class="mw-page-title-main">Buckling</span> Sudden change in shape of a structural component under load

In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.

<span class="mw-page-title-main">Hyperbolic trajectory</span>

In astrodynamics or celestial mechanics, a hyperbolic trajectory or hyperbolic orbit is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the fact that according to Newtonian theory such an orbit has the shape of a hyperbola. In more technical terms this can be expressed by the condition that the orbital eccentricity is greater than one.

In physics and engineering, a constitutive equation or constitutive relation is a relation between two physical quantities that is specific to a material or substance, and approximates the response of that material to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

<span class="mw-page-title-main">Bulk modulus</span> Resistance of a material to uniform pressure

The bulk modulus of a substance is a measure of the resistance of a substance to compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume.

<span class="mw-page-title-main">Shear modulus</span> Ratio of shear stress to shear strain

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain:

A Coulomb collision is a binary elastic collision between two charged particles interacting through their own electric field. As with any inverse-square law, the resulting trajectories of the colliding particles is a hyperbolic Keplerian orbit. This type of collision is common in plasmas where the typical kinetic energy of the particles is too large to produce a significant deviation from the initial trajectories of the colliding particles, and the cumulative effect of many collisions is considered instead. The importance of Coulomb collisions was first pointed out by Lev Landau in 1936, who also derived the corresponding kinetic equation which is known as the Landau kinetic equation.

Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.

Acoustic waves are a type of energy propagation through a medium by means of adiabatic loading and unloading. Important quantities for describing acoustic waves are acoustic pressure, particle velocity, particle displacement and acoustic intensity. Acoustic waves travel with a characteristic acoustic velocity that depends on the medium they're passing through. Some examples of acoustic waves are audible sound from a speaker, seismic waves, or ultrasound used for medical imaging.

<span class="mw-page-title-main">Contact mechanics</span> Study of the deformation of solids that touch each other

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces and frictional stresses acting tangentially between the surfaces. Normal contact mechanics or frictionless contact mechanics focuses on normal stresses caused by applied normal forces and by the adhesion present on surfaces in close contact, even if they are clean and dry. Frictional contact mechanics emphasizes the effect of friction forces.

<span class="mw-page-title-main">Radial trajectory</span>

In astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line.

In the context of classical mechanics simulations and physics engines employed within video games, collision response deals with models and algorithms for simulating the changes in the motion of two solid bodies following collision and other forms of contact.

<span class="mw-page-title-main">Bouncing ball</span> Physics of bouncing balls

The physics of a bouncing ball concerns the physical behaviour of bouncing balls, particularly its motion before, during, and after impact against the surface of another body. Several aspects of a bouncing ball's behaviour serve as an introduction to mechanics in high school or undergraduate level physics courses. However, the exact modelling of the behaviour is complex and of interest in sports engineering.

References

  1. Weir, G.; McGavin, P. (8 May 2008). "The coefficient of restitution for the idealized impact of a spherical, nano-scale particle on a rigid plane". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 464 (2093): 1295–1307. Bibcode:2008RSPSA.464.1295W. doi:10.1098/rspa.2007.0289. S2CID   122562612.
  2. Louge, Michel; Adams, Michael (2002). "Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate". Physical Review E. 65 (2): 021303. Bibcode:2002PhRvE..65b1303L. doi:10.1103/PhysRevE.65.021303. PMID   11863512.
  3. Kuninaka, Hiroto; Hayakawa, Hisao (2004). "Anomalous Behavior of the Coefficient of Normal Restitution in Oblique Impact". Physical Review Letters. 93 (15): 154301. arXiv: cond-mat/0310058 . Bibcode:2004PhRvL..93o4301K. doi:10.1103/PhysRevLett.93.154301. PMID   15524884. S2CID   23557976.
  4. Calsamiglia, J.; Kennedy, S. W.; Chatterjee, A.; Ruina, A.; Jenkins, J. T. (1999). "Anomalous Frictional Behavior in Collisions of Thin Disks". Journal of Applied Mechanics. 66 (1): 146. Bibcode:1999JAM....66..146C. CiteSeerX   10.1.1.467.8358 . doi:10.1115/1.2789141.
  5. "IMPACT STUDIES ON PURE METALS" (PDF). Archived from the original (PDF) on March 19, 2015.
  6. https://www.usga.org/ConformingGolfClub/conforming_golf_club.asp
  7. https://www.usga.org/content/usga/home-page/articles/2011/04/do-long-hitters-get-an-unfair-advantage-2147496940.html
  8. "Coefficient of Restitution". Archived from the original on 2016-11-23.
  9. "Tennis Tech resources | ITF". Archived from the original on 2019-12-03.
  10. "FIBA.basketball".
  11. Mohazzabi, Pirooz (2011). "When Does Air Resistance Become Significant in Free Fall?". The Physics Teacher. 49 (2): 89–90. Bibcode:2011PhTea..49...89M. doi:10.1119/1.3543580.
  12. Willert, Emanuel (2020). Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen (in German). Springer Vieweg. doi:10.1007/978-3-662-60296-6. ISBN   978-3-662-60295-9. S2CID   212954456.
  13. http://www-mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/materials.pdf [ bare URL PDF ]
  14. http://itzhak.green.gatech.edu/rotordynamics/Predicting%20the%20coefficient%20of%20restitution%20of%20impacting%20spheres.pdf [ bare URL PDF ]
  15. "Home | Rensselaer at Work" (PDF).

Works cited